首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   5篇
公路运输   287篇
综合类   6篇
水路运输   89篇
铁路运输   3篇
综合运输   61篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   37篇
  2017年   25篇
  2016年   32篇
  2015年   10篇
  2014年   32篇
  2013年   48篇
  2012年   38篇
  2011年   47篇
  2010年   39篇
  2009年   43篇
  2008年   40篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有446条查询结果,搜索用时 522 毫秒
241.
Currently, due to the severity of world-wide air pollution by substances emitted from vehicles, emission control is being enforced more strictly, and it is expected that the regulation requirements for emission will become even more severe. A new concept combustion technology that can reduce the Nitrogen oxides (NOx) and PM in relation to combustion is urgently required. As a core combustion technology among new combustion technologies for the next generation engine, the homogenous charge compression ignition (HCCI) is expanding its application range by adopting a multiple combustion mode, a catalyst, direct fuel injection and partially premixed charge compression ignition combustion using the split injection method. This paper used a split injection method in order to apply the partially premixed charge compression ignition combustion method without significantly altering engine specifications of the multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. Furthermore, the effects of the ratio of the fuel injection amount on split injection are investigated. From the test results, the adequate combination of the ratio of the fuel injection amount for the split injection method has some benefit on exhaust and fuel economy performance in a naturally aspirated single cylinder diesel engine.  相似文献   
242.
The transient atomization characteristics of a single-hole diesel spray were investigated to clarify the time-dependent droplet formation process of the spray through time-resolved analysis of the droplet size data acquired by using a 2-D PDPA (phase Doppler particle analyzer). Comparisons among the three single-hole diesel nozzles on the atomization characteristics were made to confirm the effects of the hole-diameter. The hole diameter of the single-hole diesel nozzles varied with dn=0.22, 0.32 and 0.42 mm. The time-resolved diameter, SMD (Sauter mean diameter) and AMD (arithmetic mean diameter) of droplets in diesel spray injected into still ambient air were measured. The SMD and AMD decreased with decreasing nozzle hole diameter. The SMD distribution along the spray centerline steeply decreased with increasing axial distance before reaching a constant value. In the time-dependent analysis of the SMD of the whole flow field, the SMD gradually increased with time after the initiation of injection, reached a maximum value, and then decreased.  相似文献   
243.
An important goal in diesel engine research is the development of a means to reduce the emissions of nitrogen oxides (NOx). The use of a cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxides. Since PM (Particulate Matter) fouling reduces the efficiency of an EGR cooler, a tradeoff exists between the amount of NOx and PM emissions, especially at high engine loads. In the present study, we performed engine dynamometer experiments and numerical analyses to investigate how the internal shape of an EGR cooler affects the heat exchanger efficiency. Heat exchanger efficiencies were examined for plain and spiral EGR coolers. The temperature and pressure distributions inside these EGR coolers were obtained in three dimensions using the numerical package program FLUENT.  相似文献   
244.
In recent years, particle number emissions rather than particulate mass emissions in automotive engines have become the subject with controversial discussions. Recent results from studies of health effects imply that it is possible that particulate mass does not properly correlate with the variety of health effects attributed to engine exhaust. The concern is now focusing on nano-sized particles emitted from I. C. engines. In this study, particulate mass and particle number concentration emitted from light-duty vehicles were investigated for a better understanding of the characteristics of the engine PM from different types of fuels, such as gasoline and diesel fuel. Engine nano-particle mass and size distributions of four test vehicles were measured by a condensation particle counter system, which is recommended by the particle measurement program in Europe (PMP), at the end of a dilution tunnel along a NEDC test mode on a chassis dynamometer. We found that particle number concentrations of diesel passenger vehicles with DPF system are lower than gasoline passenger vehicles, but PM mass has some similar values. However, in diesel vehicles with DPF system, PM mass and particle number concentrations were greatly influenced by PM regeneration. Particle emissions in light-duty vehicles emitted about 90% at the ECE15 cycle in NEDC test mode, regardless of vehicle fuel type. Particle emissions at the early cold condition of engine were highly emitted in the test mode.  相似文献   
245.
This paper investigates an active front steering control strategy based on quantitative feedback theory (QFT). By incorporating feedback from a yaw rate sensor into the active steering system, the control system improves the dynamic response of the vehicle. The steering response of a vehicle generally depends upon uncertain quantities like mass, velocity, and road conditions. Thus, QFT is used to design a controller with robust performance. A multi-degree-of-freedom nonlinear model is co-simulated here by MATLAB Simulink and ADAMS/CAR. The performance of the control system is evaluated under various emergency maneuvers and road conditions. The result shows that the designed robust control system has good control performance and can efficiently improve handing qualities and stability characteristics.  相似文献   
246.
In the early design stage of a vehicle, simulation of interior noise is useful for assessment and enhancement of the noise, vibration and harshness (NVH) performance. Traditional transfer path analysis (TPA) technology cannot simulate interior noise since it uses an experimental method. In order to solve this problem, hybrid TPA is employed in this paper. Hybrid TPA uses simulated excitation force as the input force, which excites the flexible body of a car at the mount points, while traditional TPA uses the measured force. This simulated force is obtained by numerical analysis of the finite element (FE) model of a powertrain. Interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA corresponds very well to the measured interior noise, with some difference due to not only experimental error and simulation error, but also the effect of the airborne path.  相似文献   
247.
A white-box friction draft gear model has been developed. All components of the draft gear are considered. The distinctive feature of the model, as compared to its predecessor, is the transitional characteristic, which accounts for the effect of elastic deformations of the draft gear housing on the position of the friction wedge system components under loading. The adjustment of the model parameters for improved agreement with experimental data is discussed. The new model can be used in the simulation of shunting impacts for single cars and car groups represented by detailed finite-element models. An example of the simulation is presented and compared with experimental data obtained using a shunting hump test stand.  相似文献   
248.
In this research, the effects of three operating parameters (Diesel injection timing, propane ratio, and exhaust gas recirculation (EGR) rates) in a diesel-propane dual fuel combustion were investigated. The characteristics of dual-fuel combustion were analyzed by engine parameters, such as emission levels (Nitrogen oxides (NOx) and particulate matter (PM)), gross indicated thermal efficiency (GIE) and gross IMEP Coefficient of Variance (CoV). Based on the results, improving operating strategies of the four main operating points were conducted for dual-fuel PCCI combustion with restrictions on the emissions and the maximum pressure rise rate. The NOx emission was restricted to below 0.21 g/kWh in terms of the indicated specific NOx (ISNOx), PM was restricted to under 0.2 FSN, and the maximum pressure rise rate (MPRR) was restricted to 10 bar/deg. Dual-fuel PCI combustion can be available with low NOx, PM emission and the maximum pressure rise rate in relatively low load condition. However, exceeding of PM and MPRR regulation was occurred in high load condition, therefore, design of optimal piston shape for early diesel injection and modification of hardware optimizing for dual-fuel combustion should be taken into consideration.  相似文献   
249.
The use of plastic in vehicle development has increased. In particular, a design trend has resulted in chromiumplated plastics being used in exterior panels. Recently, as the appearance has become more important in design, the plastic radiator grille has become larger, to where it can become the primary member when a front collision happens. The radiator grille should be designed with considerations of the geometric structure, such as delamination, and material characteristics, when plastics are plated with chromium. The enlarged grille has to pass regulations like FMVSS Part 581. Although the material property of plastic has been studied before, what seems to be lacking is study on the crashworthiness of plastic radiator grilles that are plated using chromium. In this paper, in order to evaluate the crashworthiness, tensile test and front collision analysis using finite element method are performed. Tensile test is conducted with 4 types of materials, and then material properties of chromium-plated plastics are obtained. Meanwhile radiator grille’s crashworthiness is evaluated using finite element analysis method. Analysis result is evaluated according to failure criterion. Through this study, method of the assessment of plastic radiator grille’s crashworthiness considered material properties of chromium plated plastics is proposed, and it can be predicted the delamination and the failure point of radiator grille at the design step.  相似文献   
250.
This paper presents a fault-tolerant brake torque controller for four-wheel-distributed braking systems with in-wheel motors and Electro-Mechanical Brakes (EMB). Mechanical and electrical faults can degrade the performance of the EMB actuators and, thus, their effects need to be compensated in vehicle dynamics level. In this study, the faults are identified as performance degradation and expressed by the gains of each actuator. Assuming the brake force distribution and the regenerative braking ratios, the over-actuated braking system is simplified into a two-input system. A sliding mode controller is designed to track the driver’s braking and steering commands, even if there exist faults in EMBs. In addition, adaptive schemes are constructed to achieve the fault-tolerant control in braking. The proposed controller and strategies are verified in the EMB HILS (Hardware-in-loop-simulation) unit for various conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号