首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   867篇
  免费   4篇
公路运输   248篇
综合类   22篇
水路运输   281篇
铁路运输   21篇
综合运输   299篇
  2022年   16篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   21篇
  2017年   27篇
  2016年   28篇
  2015年   12篇
  2014年   33篇
  2013年   119篇
  2012年   34篇
  2011年   36篇
  2010年   43篇
  2009年   38篇
  2008年   44篇
  2007年   15篇
  2006年   22篇
  2005年   22篇
  2004年   12篇
  2003年   24篇
  2002年   18篇
  2001年   12篇
  2000年   12篇
  1999年   18篇
  1998年   28篇
  1997年   20篇
  1996年   16篇
  1995年   8篇
  1994年   4篇
  1993年   13篇
  1992年   13篇
  1991年   12篇
  1990年   7篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   12篇
  1984年   8篇
  1983年   6篇
  1982年   8篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   4篇
  1977年   7篇
  1976年   5篇
  1975年   6篇
  1974年   10篇
  1972年   5篇
排序方式: 共有871条查询结果,搜索用时 0 毫秒
861.
Compressed air can be used as an energy source for brake systems in medium-heavy and heavy-duty commercial vehicles. The moisture in compressed air, which is due to high temperature and humidity, can be eliminated by using an air dryer. In this paper, drying performance data for a cartridge were obtained and used to develop a drying performance program, to predict the moisture and relative humidity in the air tanks of vehicles. The on-load time, off-load time, air flow, duty cycle, humidity and dew point temperature were calculated according to air consumption. The validity of the program was verified, and it was shown to be able to predict humidity changes in the air tank. The air tank capacity was increased from 100 to 130 to reduce the duty cycle. Therefore, the regeneration rate decreased from 18% to 15%, but the dew point depression temperature (ΔT) remained above 30°C. The duty cycle decreased from 50% to 43%, and the total operation time and power consumption of the air compressor were reduced. In conclusion, fuel savings were obtained by changing the parameters to optimize the system.  相似文献   
862.
This paper identifies a control method used to reduce torque ripple of a permanent magnet synchronous motor (PMSM) for an electric power steering (EPS) system. NVH (Noise Vibration Harshness) is important for safe and convenient driving. Vibration caused by motor torque is a problem in column type EPS systems. Maintaining a very low torque ripple is one solution that allows for smoother steering. Theoretically, it is possible to design and drive the motor without torque ripple. However, in reality, a PMSM system torque ripple is caused by the motor itself (saturation in the iron core and EMF distortion) and the imperfect driver. This paper analyzes torque ripple of a PMSM system, and an advanced PMSM control method for the column typed EPS system is presented. Results of the analysis indicate that the compensation current is needed in order to minimize torque ripple when a PMSM is driven.  相似文献   
863.
The present study aims at applying structural reliability methods to assess the implicit safety levels of the buckling strength requirements for longitudinal stiffened panels implemented in the IACS Common Structural Rules (CSR) for double hull oil tankers. The buckling strength requirements considered are used in the initial stage of the hull girder scantlings’ design to control the buckling capacity of longitudinal stiffened panels subjected to the compressive loads induced by the hull girder vertical bending. The following buckling collapse failure modes are explicitly considered in the design formulation: uniaxial buckling of the plating between stiffeners, column buckling of stiffeners with attached plating and lateral-torsional buckling or tripping of stiffeners.The paper presents the procedure used to assess the implicit safety levels of the strength requirements for the three buckling collapse failure modes above mentioned, which includes the optimization of the scantlings of the plate panels and longitudinal stiffeners in order to reflect the minimum strength required by the formulation. A first order reliability formulation is adopted, and stochastic models proposed in the literature are used to quantify the uncertainty in the relevant design variables. A sample of five oil tankers representative of the range of application of the IACS-CSR design rules is considered. The effect of corrosion in the implicit safety levels is quantified based on the three corrosion levels of the Net Thickness Approach (NTA) adopted in the design rules. Sensitivity analyses are also performed to quantify the relative contribution or importance of each design random variable to the implicit safety levels.  相似文献   
864.
Increasing awareness and concern about the status of mobility-disadvantaged groups in society has given rise to a wide body of research that focuses on the social exclusion dimension of transportation. To date, much of the empirical work on this topic is mainly spatial in nature despite recent developments that call for the inclusion of time use analyses in social exclusion research. In this paper we attempt to fill this gap by estimating activity and trip durations to determine whether poverty, old age, or being a single parent results in time use patterns indicative of exclusion. Given the importance of shopping and using services for social inclusion objectives, these activities are the focus of this investigation. In terms of methods, use of a multiple equation approach allows for the estimation of the daily duration of shopping activities and trips while simultaneously controlling for daily durations of four broad categories of activities as well as their associated travel times. The results indicate: that being a senior citizen increases travel durations while decreasing shopping activity durations; that coming from a low income household decreases shopping activity durations; and single-parent status does not impact shopping activity durations when holding income and other activity durations constant. These results highlight the feasibility and challenges of time-use and activity analysis in social exclusion research.  相似文献   
865.
Conventional design methods require the lane marking patterns, which are painted on ground showing road users the permissible turning directions on different approach lanes, as exogenous inputs to define the traffic stream grouping for analysis. This predefined grouping of traffic movements may restrict the design of signal timings in the optimisation procedures. More recently, a lane-based design method has been developed to relax the lane markings as binary-type control variables in a mathematical programming approach. The lane marking patterns and the signal timings can then be optimised simultaneously in a unified framework. This paper presents an extension work to further relax the numbers of approach lane in traffic arms as new integer variables which can then be optimised to give optimal lane arrangement in various arms of a junction to manage the given traffic demands more efficiently. All well-defined signal timings variables in the phase-based approach as well as the lane marking and lane flow variables in the lane-based approach together with their governing constraints are all preserved in the new formulation for the reserve capacity optimisation of isolated signal-controlled junctions.  相似文献   
866.
In the process of developing the brake disc, it is necessary that we predict the suitability of the design. In this manner, we can affirm that even the first prototype will satisfy all of the customer homologation requests. Usually those comprise different sequential braking tests in which the maximal achieved temperature is the criterion that governs brake disc suitability. The knowledge of how to predict the behavior of a brake disc in the early pretesting phase has a significant impact on development costs and time. The common method that is used for predicting the temperatures in the brake disc during braking is numerical simulation analysis. With the help of Computational Fluid Dynamics, the flow through a vehicle ventilated brake disc of known geometry was determined, and the wall heat transfer coefficients for all vehicle speeds and brake disc temperatures were calculated. The results were then imported into a thermal numerical simulation of a sequential-braking vehicle test. The results showed that the consideration of cooling factors has a significant impact on temperature courses. To obtain accurate results from the numerical simulation and to simulate the vehicle test precisely, the proper wall heat transfer coefficients must be considered. The proposed method produces more accurate numerical results and enables the development engineer to develop suitable brake disc geometry in the early pretesting phase.  相似文献   
867.
This paper explores the use of sliding mode observers to detect the onset of potentially dangerous vehicle modes such as oversteer, understeer or split-μ braking. Provided these modes can be detected quickly enough, existing stability controllers can be engaged to ensure safe performance of the vehicle. It is shown that the equivalent output error injection signals associated with the sliding mode observer have distinctive signatures depending on the particular mode encountered. Appropriate thresholds on these signals can be set so the scheme ignores variations which arise during normal driving, but can detect and isolate different undesirable vehicle modes within 0.3 seconds of their onset.  相似文献   
868.
This paper describes the construction of a stochastic model of urban railway track geometry irregularities, based on experimental data. The considered irregularities are track gauge, superelevation, horizontal and vertical curvatures. They are modelled as random fields whose statistical properties are extracted from a large set of on-track measurements of the geometry of an urban railway network. About 300–1000 terms are used in the Karhunen–Loève/Polynomial Chaos expansions to represent the random fields with appropriate accuracy. The construction of the random fields is then validated by comparing on-track measurements of the contact forces and numerical dynamics simulations for different operational conditions (train velocity and car load) and horizontal layouts (alignment, curve). The dynamics simulations are performed both with and without randomly generated geometrical irregularities for the track. The power spectrum densities obtained from the dynamics simulations with the model of geometrical irregularities compare extremely well with those obtained from the experimental contact forces. Without irregularities, the spectrum is 10–50?dB too low.  相似文献   
869.
There is an increasing interest in supercharging spark ignition engines operating on CNG (compressed natural gas) mainly due to its superior knock resisting properties. However, there is a penalty in volumetric efficiency when directly injecting the gaseous fuel at early and partial injection timings. The present work reports the combined effects of a small boost pressure and injection timing on performance and combustion of CNG fueled DI (direct injection) engine. The experimental tests were carried out on a 4-stroke DI spark ignition engine with a compression ratio of 14. Early injection timing, when inlet valves are still open (at 300°BTDC), and partial injection timing, in which part of the injection occurs after the inlet valves are closed (at 180°BTDC), were varied at each operating speed with variation of the boost pressure from 2.5 to 10 kPa. A narrow angle injector (NAI) was used to increase the mixing rate at engine speeds between 2000 and 5000 rpm. Similar experiments were conducted on a naturally aspirated engine and the results were then compared with that of the boosting system to examine the combined effects of boost pressure and injection timing. It was observed that boost pressure above 7.5 kPa resulted in an improvement of performance and combustion of CNG DI engine at all operating speeds. This was manifested in the faster heat release rates and mass fraction burned that in turn improved combustion efficiency of the boosting system. An increased in cylinder pressure and temperature was also observed with boost pressure compared to naturally aspirated engine. Moreover, the combustion duration was reduced due to concentration of the heat release near to the top dead center as the result of the boost pressure. Supercharging was also found to reduce the penalty of volumetric efficiency at both the simulated port and partial injection timings.  相似文献   
870.
The concept of Low Temperature Combustion (LTC) has been advancing rapidly because it may reduce emissions of NOx and soot simultaneously. Various LTC regimes that yield specific emissions have been investigated by a great number of experiments. To accelerate the evaluation of the spray combustion characteristics of LTC, to identify the soot formation threshold in LTC, and to implement the LTC concept in real diesel engines, LTC is modeled and simulated. However, since the physics of LTC is rather complex, it has been a challenge to precisely compute LTC regimes by applying the available diesel combustion models and considering all spatial and temporal characteristics as well as local properties of LTC. In this paper, LTC regimes in a constant-volume chamber with n-Heptane fuel were simulated using the ECFM3Z model implemented in a commercial STAR-CD code. The simulations were performed for different ambient gas O2 concentrations, ambient gas temperatures and injection pressures. The simulation results showed very good agreement with available experimental data, including similar trends in autoignition and flame evolution. In the selected range of ambient temperatures and O2 concentrations, soot and NOx emissions were simultaneously reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号