首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8115篇
  免费   101篇
公路运输   1876篇
综合类   597篇
水路运输   2541篇
铁路运输   769篇
综合运输   2433篇
  2022年   114篇
  2021年   60篇
  2020年   46篇
  2019年   83篇
  2018年   195篇
  2017年   118篇
  2016年   180篇
  2015年   92篇
  2014年   243篇
  2013年   1227篇
  2012年   342篇
  2011年   425篇
  2010年   282篇
  2009年   371篇
  2008年   328篇
  2007年   273篇
  2006年   234篇
  2005年   270篇
  2004年   291篇
  2003年   181篇
  2002年   149篇
  2001年   135篇
  2000年   141篇
  1999年   105篇
  1998年   129篇
  1997年   111篇
  1996年   138篇
  1995年   149篇
  1994年   84篇
  1993年   189篇
  1992年   160篇
  1991年   77篇
  1990年   83篇
  1989年   57篇
  1988年   74篇
  1987年   65篇
  1986年   59篇
  1985年   77篇
  1984年   73篇
  1983年   73篇
  1982年   73篇
  1981年   95篇
  1980年   68篇
  1979年   91篇
  1978年   56篇
  1977年   69篇
  1976年   53篇
  1975年   65篇
  1974年   51篇
  1973年   45篇
排序方式: 共有8216条查询结果,搜索用时 0 毫秒
241.
Combining the present situation and development trend of different tunnel support technologies at home and abroad, this paper analyzes the problems of rockburst in hard rock tunnels and large deformation in soft rock tunnels caused by high ground stress. It is concluded that: 1) regarding the rockburst problem, the current support technology is mainly influenced by the rock burst mechanism which is dominated by static factors, and so the used support components are generally of smaller deformation performance and "passive support" properties; 2) as the rockburst is the result of dynamic-static stress coupling, and only the anchor bolt has the "active support" attribute in the current "shotcrete+anchor bolt+wire net" support system, so the best support system should have the two functions of active support and energy release in terms of the rockburst problem, and the key focus of the research and development is anchorage members; 3) there are three main support types for large deformation in soft rock tunnels, e.g. the heavy support, layered support and yielding support. Among them, the heavy support system in underground cavern with large deformation is easy to induce excessive surrounding rock pressure, and so the applicable conditions are limited. The layered support system is still not the best choice due to its immature theoretical study, difficult determination of the thickness value and the installation time of each support layer and the interference to construction progress. With the characteristics of timely support and yielding while supporting, the yielding support system can give full play to the performance values of surrounding rocks and supporting materials, and make both of them reach the optimal state, so it is the best choice for supporting the soft rock tunnels with large deformations. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
242.
For existing advanced geological forecasting, the forecast distance is short and the test frequency is high, increasing test and construction risks. Since various methods have different requirements for the test environ-ment, preparation work can be tedious and result in a long construction time thereby affecting normal construction.A new advanced geological forecast technique based on multi-source seismic interferometry for tunnels is proposed.This technique uses the blast at one end of tunnel as a centrum and receives the signal at the other end of the tun-nel, therefore allowing advanced geological forecasting of the unexcavated tunnel part by relative processing and im-aging. A numerical simulation of this kind of geological forecasting using the finite difference method to simulate two kinds of unfavorable geological bodies (karst and a fault) predicted them accurately and verified the effective-ness and accuracy of this geological forecasting method. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
243.
Studying the in-situ stress distribution at a tunnel site is very important to determine surrounding rock characteristics, the engineering design and the construction scheme. By using the multiple linear regression method based on the least square algorithm, the initial geostress field is analyzed and the corresponding regression coefficients are obtained. The ground stress obtained from the proposed back analysis is reasonable and can meet the demands of the engineering applications. From the rockburst risk level distribution diagram, it is speculated that the Wunvfeng tunnel is in the high filed stress area. Field monitoring should be strengthened and emergency plans should be made to cope with the rockburst risks during the construction process. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
244.
The application of prefabricated tunnel technology has been become a new research field both in China and abroad. Based on the running tunnel between Yufuhe station and Wangfuzhuang station of Jinan rail transit line R1, a new prefabricated tunnel construction technology, the PBA method is presented. This paper makes a detailed discussion on section form, supporting scheme and construction process of the PBA method. In this study, 3D a new 3D numerical model for PBA method is presented by finite difference numerical simulation software Flac and the construction processes are modeled. The rule of ground surface settlement, ground deformation and structural stress caused by PBA method is studied in detail. Results show that the structure of PBA method can effectively control the deformation magnitude and scope. Stress concentration appears at the prefabricated connection parts and the reinforcement needs to check. The total assembled structure forms the load-bearing system after the completion of the lateral wall. The built-in depth of the precast pile and pile bottom grouting quality should to be ensured to control the displacement of the precast piles. The results of this study will be a useful reference for similar projects in the future. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
245.
In order to quantitatively evaluate the safety of the surrounding rock of an underground cavern under seis-mic load, a comprehensive evaluation method for the stability of surrounding rock is proposed based on the general safety factor and point safety factor. A calculation method for the general safety factor of a cavern based on the prin-ciple of shear strength reduction of a rock mass is given, the run-through of the plastic zone between the main power-house and main transformer room is presented as a critical criterion for the overall instability of the cavern, and the general safety factor is obtained by searching for the reduction coefficient. A point safety factor calculation method based on the Mohr-Coulomb yield criterion is given. The influence of different seismic input parameters on the general safety factor of the cavern and the point safety factor of key positions are studied based on an underground power-house cavern of a hydropower station in Southwest China. The results show that the quantitative evaluation method for the stability of the surrounding rock based on the safety factor is feasible and can reflect the general safety de-gree and local safety degree of different positions of the cavern for different working conditions. It is found that the general safety factor of the cavern and the point safety factor of key positions decrease with an increase of the ampli-tude and duration of a seismic wave while they increase with an increase of the incident angle; additionally, the low frequency of a seismic wave has a great influence on the cavern while the high frequency has little effect. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
246.
More and more multiple-track tunnels and super-large section tunnels have been built, and disman- tling of temporary strut is a weak point of the whole structure during force transfer when the secondary lining is con- structed. It is significant to guarantee structure safety during dismantling of temporary strut. Little systematic re- search on safety in dismantling of temporary strut of the super-large section tunnel with double-layer primary support has been conducted, so the internal force and security of the two-layer primary support of the Xinkaotang tunnel were analyzed by a numerical analysis and site measurement, and it proves the effect of two-layer primary support on the safety during strut dismantling. The research results indicate that: (1) with constant support thickness and one-time longitudinal dismantling length, the safety factor of secondary primary support is larger than that of the first primary support, and the safety factor of the first primary support is larger than that of the single-layer primary support. Change range of safety factor for the first primary support is smaller than that of the single-layer primary support, and the safe factor for the single-layer primary support is smaller than that of the secondary primary support; (2) with the same support pattern, the safety factors increase firstly and then decrease with an increase of the onetime dismantling length. The calculated results of various cases show that the reasonable one-time dismantling length for this project is about 9 m. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
247.
In this paper the numerical simulation analysis of the effect of explosion in the gas pipeline compartment of a utility tunnel on neighboring metro tunnels was conducted using the software AUTODYN. The results show that the TNT equivalent in a fireproof partition with length of 200 m is 41.6 kg when the gas concentration in the gas pipeline compartment reaches 10%; the blast wave has much effect on the crown and arch waist of the round metro tunnel and it’s necessary to take some protective measures in both areas; when the surrounding soil is sand, the utili- ty tunnel is above the round metro tunnel and their alignments are in the same direction, the greater the vertical spacing between the utility tunnel and the metro tunnel, the smaller the effect of the blast wave on the metro tunnel; when the vertical spacing is 7.2 m, the maximum dynamic tensile stress is 1.86 MPa (including the static stress value of 1 MPa in the tunnel segment) and it is slightly smaller than the designed tensile strength of metro tunnel (about 1.89 MPa). The maximum vibration velocity and the maximum displacement meet the structural stability require- ments, so it is suggested the vertical spacing between the utility tunnel and metro tunnel shall not be less than 7.2 m. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
248.
Jacking force is the most important parameter in jacking pipe engineering, and reasonable calculation of jacking forces plays an important role in safe and smooth pipe jacking construction. There are many calculation methods for pipe jacking force at present, and the calculation results may be affected to some extent by different cal⁃ culation methods. For this reason, calculation methods of jacking force (frictional resistance) were collected and a comparative analysis was conducted with aspects to the advantages, disadvantages and applicabilities. The results show that as for the jacking force calculated by empirical formulae, the soil layer classifications corresponding to giv⁃ en frictional force per unit area and relevant factors to be considered are different, and the values of frictional force per unit area between pipe and soil in the same soil layer are also different; as for the jacking force calculated by theo⁃ retical formulae, the calculation methods for vertical earth pressure at crown are different and much effected by the pipe buried depth; as for the jacking force calculated by numerical simulation, the selected theories for the simula⁃ tion program and the construction factors to be considered during simulation are different. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
249.
Wet shotcrete spraying units are widely used in underground engineering, for railways, highways, water conservancy and hydropower stations, municipal works, mining and military and other industries. Structural analysis and mechanical behavior optimization are conducted regarding the lifting arm of a TKJ series shotcrete spraying unit, and optimization of the hinge point position and working scope of the lifting arm is realized. The optimal layout scheme for the hinge force is given based on the Monte Carlo method, the hinge force of the lifting arm is improved for the mean and maximum values, and the maximum and average hinge force of the lifting cylinder decrease by 23.14% and 7.70%, respectively, compared with that of the original scheme. The static strength is checked using Ansys-Workbench for the optimized scheme, and the results show that the optimized scheme has a larger safety re-serve and that the structural design is more reasonable than the original scheme. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
250.
In recent years, large shield tunnels with internal double-decked lanes have been developing rapidly in the field of highway tunnels, and prefabricated elements are increasingly adopted in internal structure. Based on the columns-base joint in Zhuguanglu tunnel, which is under construction, 2 full-scale specimens are designed for the quasi-static test, one specimen is connected with grout sleeve splicing and the other is cast in place. The test results show that: the bearing capacity of specimen with grout sleeve splicing is equal to that of cast-in-situ specimen, but its ductility and energy dissipation capacity are worse than that of the cast-in-situ specimen. And for the specimen with grout sleeve splicing, there exists crack concentration on the area above the sleeve. The crack width is too larger in this area. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号