排序方式: 共有138条查询结果,搜索用时 15 毫秒
111.
在碳质千枚岩地层铁路隧道进洞施工中,洞口围岩变形过大,洞口加固措施效果不明显,导致进洞施工危害频发。以天水—陇南铁路杜家沟隧道工程为依托,采用现场勘察、工艺试验等方法研究碳质千枚岩地层铁路隧道进洞施工控制措施,并对地表钢管桩注浆加固方案与钢筋混凝土方桩加固方案进行对比分析。结果表明,钢筋混凝土方桩加固方案可有效控制隧道洞口四周围岩变形且效果明显。经现场施工验证,该方案可保证施工质量、降低施工安全风险、加快施工进度,对类似工程项目具有一定参考作用。 相似文献
112.
以某高速公路千枚岩隧道为研究对象,采用数值模拟分析和现场监测两种方法研究了千枚岩隧道施工过程中初期支护的变形规律和二次衬砌的受力状态,并与现场实测数据进行对比分析。在开挖过程中隧道衬砌支护结构变形量大,完工后逐步趋于稳定;二次衬砌主要承受压应力,局部承受拉应力,但均小于极限应力值,衬砌结构稳定,相关研究结论对指导类似隧道施工具有工程实践意义。 相似文献
113.
为研究颗粒级配对全风化软岩填料的压实特性及破碎特性的影响,对不同级配的全风化软岩进行击实、筛分及承载比试验。结果表明:全风化软岩最大干密度为1.86~2.05 g/cm3,最佳含水率为9.50%~11.23%。最大干密度随粗颗粒质量分数的增大而增大,随有效粒径和限制粒径的增大而增大,随不均匀系数的增大而增大,随曲率系数的增大先减小后增大;最佳含水率随粗颗粒质量分数的增大而减小,随有效粒径和限制粒径的增大而减小,随不均匀系数的增大而减小,随曲率系数的增大先增大后减小;4种级配的全风化软岩填料击实后的平均破碎率为0~30%,击实后级配曲线均向上限偏移,含水率对填料破碎率的影响较小,且粗颗粒质量分数越小破碎率越小;不同级配的加州承载比(california bearing ratio, CBR)为2.90~12.36,填料在压实过程中存在一定破碎,但含石量较大的土体仍能满足路堤填料填筑要求。在路堤填筑过程中提高含石量能取得较好的压实效果,可提高路堤承载比。 相似文献
114.
针对象山隧道全风化花岗斑岩地层,结合前期的上下微台阶预留核心土环状开挖法的变形情况,分析得出该地层施工控制要点,优化施工方案,提出单侧壁导坑开挖法、三台阶+临时仰拱开挖法,坚持执行隧道开挖"十八字"方针,通过加强支护、增加临时支撑、初支快速封闭、二次衬砌紧跟等一系列措施有效地控制了隧道变形。 相似文献
115.
116.
花岗石类全风化带的工程地质特性 总被引:2,自引:0,他引:2
分析研究国内若干工程实例花岗岩类岩石风化带的物理力学性质试验指,论述了花岗岩类岩石全风化带的工程地质特性,并提出全风化带与强风化带和残积土的区别。 相似文献
117.
全风化花岗岩路基施工与质量控制 总被引:1,自引:0,他引:1
根据临长高速公路k147+000~k171+000路段为全风化花岗岩路段的特点,结合实际施工情况,介绍了全风化花岗岩的施工与质量控制。 相似文献
118.
以千枚岩地质条件下的新两河关隧道为工程背景,基于上下台阶法和上半断面预留核心土法两种模型,利用FLAC-3D有限差分软件对不同台阶长度和核心土长度进行分析,获得了施工过程中合理的台阶长度和核心土长度. 相似文献
119.
就地铁基坑局部区域出现大变形的情况,分析区域地质的岩性、岩石分类及岩石分布,得出开挖区域的地质特点,通过大变形区域分布和变形程度与全风化炭质页岩分布一致情况,得出基坑变形受软弱地层控制的结论.分析全风化炭质页岩区域基坑变形特点,就规划开挖推进方式、钢支撑预支护、加快主体施工进度及降低拆撑影响提供参考建议. 相似文献
120.
以全风化岩作为无砟轨道的路基,必须进行加固。目前,对山区全风化岩CFG桩复合地基工后沉降的计算参数如何选取的研究不多,而高速铁路设计规范对无砟轨道路基工后沉降控制的要求极为严格。针对山区全风化岩采用CFG桩进行加固,并对其复合地基工后沉降计算参数的选取加以分析。研究结果表明:全风化层CFG桩复合地基的沉降计算采用压缩模量计算方法更为合理,同时对于不同地区、不同性质全风化层应分别建立压缩模量与标贯击数之间的经验关系式;CFG桩在穿过具有明显黏性土特性的全风化岩层后,结合沉降计算,再往下至少进入深层1~2 m,地层含水量较大时,桩长宜再加长。 相似文献