全文获取类型
收费全文 | 11172篇 |
免费 | 270篇 |
专业分类
公路运输 | 3859篇 |
综合类 | 3309篇 |
水路运输 | 1026篇 |
铁路运输 | 2662篇 |
综合运输 | 586篇 |
出版年
2024年 | 107篇 |
2023年 | 367篇 |
2022年 | 460篇 |
2021年 | 605篇 |
2020年 | 297篇 |
2019年 | 265篇 |
2018年 | 101篇 |
2017年 | 209篇 |
2016年 | 247篇 |
2015年 | 463篇 |
2014年 | 688篇 |
2013年 | 627篇 |
2012年 | 492篇 |
2011年 | 556篇 |
2010年 | 566篇 |
2009年 | 637篇 |
2008年 | 591篇 |
2007年 | 489篇 |
2006年 | 436篇 |
2005年 | 413篇 |
2004年 | 413篇 |
2003年 | 404篇 |
2002年 | 322篇 |
2001年 | 345篇 |
2000年 | 243篇 |
1999年 | 185篇 |
1998年 | 152篇 |
1997年 | 108篇 |
1996年 | 114篇 |
1995年 | 95篇 |
1994年 | 99篇 |
1993年 | 86篇 |
1992年 | 81篇 |
1991年 | 73篇 |
1990年 | 56篇 |
1989年 | 41篇 |
1988年 | 2篇 |
1965年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
962.
963.
964.
佛山市南庄大道东延线工程主桥跨越东平水道,是一座跨径65 m+75 m+268 m的单塔双索面斜拉桥,主梁采用预应力混凝土梁与钢结构箱梁组成的混合梁体系,结构构造及受力情况复杂。详细介绍了该桥的设计情况。 相似文献
965.
966.
石剑 《内蒙古公路与运输》2020,(4):34-38
为了能够保障装配式桥梁墩柱快速化预制和精准定位安装施工,文章通过预制厂合理规划建设和功能分区优化等关键点控制,进行灌浆套筒、锚固波纹管连接检验和座浆、灌浆工艺优化措施保证构件连接和受力可靠的预制墩柱连接关键技术研究,开发适用不同结构尺寸、形式、坡度的通用性胎架和预制模板,优化预制工装及完善流水作业施工工艺。最后,研究合理的构件精准定位安装技术,进行吊装、运输和安装快速化施工,形成装配式桥梁墩柱预制安装施工技术方案,对同类型桥梁工程装配式施工具有一定参考。 相似文献
967.
968.
粗骨料活性粉末混凝土(CA-RPC)桥面板是一种新型高性能桥梁构件,文中对其结构行为开展试验研究和数值仿真分析。对带湿接缝CA-RPC桥面板试件和无接缝桥面板试件进行四点弯曲加载的对比试验,得到全过程荷载-位移曲线;在三维有限元模型中通过引入牵引-分离本构关系,进行加载全过程数值仿真分析。研究表明,相比于整块预制桥面板,带湿接缝的CA-RPC预制桥面板的抗裂性、极限承载能力,以及延性均有所降低;有限元模型中材料特性和接触关系的合理设置,可较好地模拟CA-RPC预制桥面板的力学性能。结合试验结果和相关规范,提出了CA-RPC预制桥面板及其湿接缝区域的抗弯承载力计算方法。 相似文献
969.
以聊城中华路大桥为例,采用midas总体计算和ANSYS细部分析的有限元联合分析方法对独塔混合梁斜拉桥的钢—UHPC结合段的受力开展了研究。首先采用midas civil分析软件建立全桥的总体杆系模型,以获得钢—混结合段控制截面在各种不利工况下的内力;然后在ANSYS中建立了结合段板壳—实体有限元精细化模型,将提取的内力施加于局部模型,计算得到钢—混结合段细部应力。通过受力分析发现,独塔斜拉桥采用钢—混结合段后,充分发挥了混凝土抗压和钢结构抗拉的材料优点,构造受力合理,实现了材料和结构刚度的平顺过渡,是一种合理的方案选择。通过细部应力分析发现,在钢格室与承压板连接处以及顶底板折角、腹板折角与填充混凝土的接触面处,易产生较大的应力集中,应对这些部位进行局部加劲或采用平滑倒角的方式加以避免。对结合段中腹板的厚度与承压板厚度的参数敏感性分析结果表明,增加中腹板厚度可适当降低中腹板的应力,但不能降低其他钢结构的高应力水平;而增加承压板的厚度可以显著降低钢结构的高应力水平。 相似文献
970.
为研究桥墩高度对高烈度区连续梁桥抗震体系的影响,确定不同抗震体系的墩高适用范围,以黄茅海西引桥60 m连续梁桥为工程背景,进行了不同墩高下的约束体系对比分析,并在中间墩墩梁固结体系的基础上进一步分析了过渡墩约束体系对地震响应的影响。结果表明,当墩高较低时,减隔震体系地震响应明显小于墩梁固结体系,减隔震体系优势较大;随着墩高的增加,桥墩刚度减小,桥梁的自振周期增加,墩梁固结体系的地震响应逐渐减小,减隔震体系的优势减小。因此,建议墩高相对较矮时采用减隔震体系,墩高较高时采用墩梁固结体系。由于过渡墩设置减隔震支座可明显减小横向地震作用下结构内力,且不会大幅增加纵向地震响应,因此采用中间墩墩梁固结体系时,仍然可以考虑在过渡墩位置设置摩擦摆减隔震支座进行减隔震设计。 相似文献