首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   0篇
公路运输   253篇
综合类   68篇
水路运输   55篇
铁路运输   100篇
综合运输   131篇
  2022年   6篇
  2021年   15篇
  2020年   31篇
  2019年   7篇
  2018年   19篇
  2017年   28篇
  2016年   30篇
  2015年   41篇
  2014年   40篇
  2013年   20篇
  2012年   36篇
  2011年   44篇
  2010年   22篇
  2009年   33篇
  2008年   20篇
  2007年   47篇
  2006年   45篇
  2005年   23篇
  2004年   23篇
  2003年   20篇
  2002年   3篇
  2001年   11篇
  2000年   10篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   7篇
  1995年   7篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
排序方式: 共有607条查询结果,搜索用时 15 毫秒
211.
The United States transportation sector consumes 5 billion barrels of petroleum annually to move people and freight around the country by car, truck, train, ship and aircraft, emitting significant greenhouse gases in the process. Making the transportation system more sustainable by reducing these emissions and increasing the efficiency of this multimodal system can be achieved through several vehicle-centric strategies. We focus here on one of these strategies – reducing vehicle mass – and on collecting and developing a set of physics-based expressions to describe the effect of vehicle mass reduction on fuel consumption across transportation modes in the U.S. These expressions allow analysts to estimate fuel savings resulting from vehicle mass reductions (termed fuel reduction value, FRV), across modes, without resorting to specialized software or extensive modeling efforts, and to evaluate greenhouse gas emission and cost implications of these fuel savings. We describe how FRV differs from fuel intensity (FI) and how to properly use both of these metrics, and we provide a method to adjust FI based on mass changes and FRV. Based on this work, we estimate that a 10% vehicle mass reduction (assuming constant payload mass) results in a 2% improvement in fuel consumption for trains and light, medium, and heavy trucks, 4% for buses, and 7% for aircraft. When a 10% vehicle mass reduction is offset by an increase in an equivalent mass of payload, fuel intensity (fuel used per unit mass of payload) increases from 6% to 23%, with the largest increase being for aircraft.  相似文献   
212.
To control SOx, NOx and particulate matter emission from ships, including cruise ships, emission control areas (ECAs) have been defined by the International Maritime Organization (IMO), which influences cruise planning. This paper investigates a mixed integer programming model to reschedule voyage plans by optimizing speeds, sailing patterns and ports-of-call sequences, hence reducing fuel costs. A tabu search based solution method is developed to solve the model. Computational tests on real-world data of cruise lines are conducted in order to explore the effects of ECA regulations on cruise shipping. The results show that the proposed model can save fuel costs under ECA regulations, and the designed solution method is efficient.  相似文献   
213.
This paper analyses aggregate time-series data to estimate the direct rebound effect in UK road freight over the period 1970–2014. We investigate 25 different model specifications, conduct a comprehensive set of diagnostic tests to evaluate the robustness of these specifications and estimate the rebound effect using three different elasticities. Using the mean of the statistically significant estimates from these specifications, we estimate a direct rebound effect of 61% - which is larger than previous estimates in the literature and almost twice as large as the consensus estimate of direct rebound effects in road passenger transport. Using the mean of the estimates from our most robust models, we estimate a slightly lower direct rebound effect of 49%. Our estimates are fairly consistent between different model specifications and different metrics, although individual estimates range from 21% to 137%. We also find that an increasing proportion of UK road freight is being undertaken by foreign registered vehicles, and that increases in the vehicle weight limits have encouraged more freight activity. We highlight the significant limitations imposed by the use of aggregate time series data and recommend that further studies in this area employ data from vehicle use surveys.  相似文献   
214.
Fully automated vehicles could have a significant share of the road network traffic in the near future. Several commercial vehicles with full-range Adaptive Cruise Control (ACC) systems or semi-autonomous functionalities are already available on the market. Many research studies aim at leveraging the potential of automated driving in order to improve the fuel efficiency of vehicles. However, in the vast majority of those, fuel efficiency is isolated to the driving dynamics between a single follower-leader pair, hence overlooking the complex nature of traffic. Consequently fuel efficiency and the efficient use of the roadway capacity are framed as conflicting objectives, leading to fuel-economy control models that adopt highly conservative driving styles.This formulation of the problem could be seen as a user-optimal approach, where in spite of delivering savings for individual vehicles, there is the side-effect of the deterioration of traffic flow. An important point that is overlooked is that the inefficient use of roadway capacity gives rise to congested traffic and traffic breakdowns, which in return increases energy costs within the system. The optimisation methods used in these studies entail high computational costs and, therefore, impose a strict constraint on the scope of problem.In this study, the use of car-following models and the limitation of the search space of optimal strategies to the parameter space of these is proposed. The proposed framework enables performing much more comprehensive optimisations and conducting more extensive tests on the collective impacts of fuel-economy driving strategies. The results show that, as conjectured, a “short-sighted” user-optimal approach is unable to deliver overall fuel efficiency. Conversely, a system-optimal formulation for fuel efficient driving is presented, and it is shown that the objectives of fuel efficiency and traffic flow are in fact not only non-conflicting, but also that they could be viewed as one when the global benefits to the network are considered.  相似文献   
215.
  目的  随着电力电子器件在船舶上的广泛应用和船舶电力系统容量的不断增加,船舶电能质量问题日益突出。为此,设计一种电能质量实时评估系统。  方法  首先,基于电力推进船舶电力系统的特点和船舶电能质量的研究现状,分析主流电能质量评估算法的优缺点与可行性;然后,根据最新评估标准,筛选可以反映船舶电力系统运行特点的8个电能质量指标,构建多层次评估体系,提出基于层次分析法(AHP)-模糊综合评估(FCE)法的船舶电能质量实时评估系统;最后,基于电力推进船舶实验装置进行可行性验证,并通过Matlab软件设计相应的图形用户界面(GUI)。  结果  该评估系统可以实现船舶电能质量的1 s级实时评估打分,同时生成定性与定量2种形式的评估结果。  结论  AHP-模糊综合评估法可以成功应用于船舶电能质量的实时评估系统,有利于船舶电力系统设备的集中监测管理,并为其他评估方法在船舶领域的应用提供一种新的设计思路。  相似文献   
216.
This study aims (i) to analyze theoretical properties of a recently proposed describing-function (DF) based approach (Li and Ouyang, 2011; Li et al., 2012) for traffic oscillation quantification, (ii) to adapt it for estimating fuel consumption and emission from traffic oscillation and (iii) to explore vehicle control strategies of smoothing traffic with advanced technologies. The DF approach was developed to predict traffic oscillation propagation across a platoon of vehicles following each other by a nonlinear car-following law with only the leading vehicle’s input. We first simplify the DF approach and prove a set of properties (e.g., existence and uniqueness of its solution) that assure its prediction is always consistent with observed traffic oscillation patterns. Then we integrate the DF approach with existing estimation models of fuel consumption and emission to analytically predict environmental impacts (i.e., unit-distance fuel consumption and emission) from traffic oscillation. The prediction results by the DF approach are validated with both computer simulation and field measurements. Further, we explore how to utilize advantageous features of emerging sensing, communication and control technologies, such as fast response and information sharing, to smooth traffic oscillation and reduce its environmental impacts. We extend the studied car-following law to incorporate these features and apply the DF approach to demonstrate how these features can help dampen the growth of oscillation and environmental impact measurements. For information sharing, we convert the corresponding extended car-following law into a new fixed point problem and propose a simple bisecting based algorithm to efficiently solve it. Numerical experiments show that these new car-following control strategies can effectively suppress development of oscillation amplitude and consequently mitigate fuel consumption and emission.  相似文献   
217.
Previous research has examined asymmetric effects of fuel price uncertainty on energy demand. If we consider that energy demand is related to travel demand, the changes in fuel prices may have asymmetric effects on highway travel demand via fuel price uncertainty. In other words, when in general fuel price is steadily rising, the highway traffic volume decreases by a small percentage. On the other hand, the highway traffic volume increases by a large percentage when fuel prices are falling. We hypothesize that the uncertainty in fuel prices generates this kind of asymmetric effect on highway traffic volume in Korea. We use the Korean monthly fuel price and highway traffic volume data from 2001 to 2009, and define the intra-month (weekly) fuel price changes as monthly fuel price volatility which is a proxy for monthly fuel price uncertainty. We found that the direction of the change in fuel prices had asymmetric effects on highway travel demand and that the fuel price uncertainty led drivers to respond asymmetrically to the changes in fuel prices.  相似文献   
218.
In this work the trade-off between economic, therefore fuel saving, and ecologic, pollutant emission reducing, driving is discussed. The term eco-driving is often used to refer to a vehicle operation that minimizes energy consumption. However, for eco-driving to be environmentally friendly not only fuel consumption but also pollutant emissions should be considered. In contrast to previous studies, this paper will discuss the advantages of eco-driving with respect to improvements in fuel consumption as well as pollutant gas emissions. Simulating a conventional passenger vehicle and applying numerical trajectory optimization methods best vehicle operation for a given trip is identified. With hardware-in-the-loop testing on an engine test bench the fuel and emissions are measured. An approach to integrate pollutant emission and dynamically choose the ecologically optimal gear is proposed.  相似文献   
219.
It is well established that individual variations in driving style have a significant impact on vehicle energy efficiency. The literature shows certain parameters have been linked to good fuel economy, specifically acceleration, throttle use, number of stop/starts and gear change behaviours. The primary aim of this study was to examine what driving parameters are specifically related to good fuel economy using a non-homogeneous extended data set of vehicles and drivers over real-world driving scenarios spanning two countries. The analysis presented in this paper shows how three completely independent studies looking at the same factor (i.e., the influence of driver behaviour on fuel efficiency) can be evaluated, and, despite their notable differences in location, environment, route, vehicle and drivers, can be compared on broadly similar terms. The data from the three studies were analysed in two ways; firstly, using expert analysis and the second a purely data driven approach. The various models and experts concurred that a combination of at least one factor from the each of the categories of vehicle speed, engine speed, acceleration and throttle position were required to accurately predict the impact on fuel economy. The identification of standard deviation of speed as the primary contributing factor to fuel economy, as identified by both the expert and data driven analysis, is also an important finding. Finally, this study has illustrated how various seemingly independent studies can be brought together, analysed as a whole and meaningful conclusions extracted from the combined data set.  相似文献   
220.
为了实现格尔木铁路综合客运枢纽交通功能最优化与开发收益最大化,对枢纽交通规划及综合开发进行研究意义重大。枢纽交通规划从客流预测、交通换乘、设施规模预测、设施布局、车场布置、客流组织、外部道路交通优化分析,枢纽综合开发从业态需求、业态定位、地块价值、业态布局、收益测算研究。研究表明,格尔木铁路综合客运枢纽在可实现交通功能最优的同时,确保综合开发盈利弥补建设运营的亏损,为类似项目提供借鉴参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号