排序方式: 共有173条查询结果,搜索用时 0 毫秒
91.
Electric vehicles (EVs) are considered as a feasible alternative to traditional vehicles. Few studies have addressed the impacts of policies supporting EVs in urban freight transport. To cast light on this topic, we established a framework combining an optimization model with economic analysis to determine the optimal behavior of an individual delivery service provider company and social impacts (e.g., externalities and welfare) in response to policies designed to support EVs, such as purchase subsidy, limited access (zone fee) to congestion/low-emission zones with exemptions for EVs, and vehicle taxes with exemptions for EVs. Numerical experiments showed that the zone fee can increase the company’s total logistics costs but improve the social welfare. It greatly reduced the external cost inside the congestion/low-emission zone with a high population, dense pollution, and heavy traffic. The vehicle taxes and subsidy were found to have the same influence on the company and society, although they have different effects with low tax/subsidy rates because their different effects on vehicle routing plans. Finally, we performed a sensitivity analysis. Local factors at the company and city levels (e.g., types of vehicle and transport network) are also important to designing efficient policies for urban logistics that support EVs. 相似文献
93.
Reducing the air pollution from increases in traffic congestion in large cities and their surroundings is an important problem that requires changes in travel behavior. Road pricing is an effective tool for reducing air pollution, as reflected currently urban road pricing outcomes (Singapore, London, Stockholm and Milan). A survey was conducted based on establishing a hypothetical urban road pricing system in Madrid (a random sample size n = 1298). We developed a forecast air pollution model with time series analysis to evaluate the consequences of possible air pollution decreases in Madrid. Results reveal that the hypothetical road pricing for Madrid could have highly significant effects on decreasing air pollution outside of the city and in the inner city during the peak operating time periods of maximum congestion (morning peak hours from 7:00 to 10:00 and evening peak hours from 18:00 to 20:00). Furthermore, this system could have significant positive effects on a shift toward using public transport and non-motorized modes inside the hypothetical toll zone. This reveals that the system has a high capacity to motivate a decrease in air pollution and impose more sustainable behavior for public transport users. 相似文献
95.
This paper reviews and compares the performance of two dynamic transportation models – METROPOLIS and SILVESTER – which are used to predict the impacts of congestion charging for Stockholm. Both are mesoscopic dynamic models treating accumulation and dissipation of traffic queues, route choice, modal split and departure time choice. The models are calibrated independently for the baseline situation without charges and applied to forecast the effects of congestion charging. The results obtained from the two models are mutually compared and validated against the actual outcome of the Stockholm congestion charging scheme. Both models successfully predict the outcomes of the congestion charging trial at both aggregate and disaggregate levels. Results of welfare analysis, however, differ substantially due to differences in model specification. 相似文献
96.
This note demonstrates how the redistribution of revenue from a Pigouvian policy can distort incentives and handicap the social objectives of the policy by creating a moral hazard problem. Based on the Levinson (2005) game theory model, I develop a three-player bottleneck congestion game that emulates a repeated prisoner’s dilemma and derive efficient tolls. This conceptual game demonstrates the distortionary effects from a revenue-neutral toll policy with lump-sum revenue redistribution and the equity-efficiency tradeoff. 相似文献
97.
In this paper, we investigate an area-based pricing scheme for congested multimodal urban networks with the consideration of user heterogeneity. We propose a time-dependent pricing scheme where the tolls are iteratively adjusted through a Proportional–Integral type feedback controller, based on the level of vehicular traffic congestion and traveler’s behavioral adaptation to the cost of pricing. The level of congestion is described at the network level by a Macroscopic Fundamental Diagram, which has been recently applied to develop network-level traffic management strategies. Within this dynamic congestion pricing scheme, we differentiate two groups of users with respect to their value-of-time (which related to income levels). We then integrate incentives, such as improving public transport services or return part of the toll to some users, to motivate mode shift and increase the efficiency of pricing and to attain equitable savings for all users. A case study of a medium size network is carried out using an agent-based simulator. The developed pricing scheme demonstrates high efficiency in congestion reduction. Comparing to pricing schemes that utilize similar control mechanisms in literature which do not treat the adaptivity of users, the proposed pricing scheme shows higher flexibility in toll adjustment and a smooth behavioral stabilization in long-term operation. Significant differences in behavioral responses are found between the two user groups, highlighting the importance of equity treatment in the design of congestion pricing schemes. By integrating incentive programs for public transport using the collected toll revenue, more efficient pricing strategies can be developed where savings in travel time outweigh the cost of pricing, achieving substantial welfare gain. 相似文献
98.
充电基础设施市场不断扩张,使原有商业模式无法适用,企业想要获得市场竞争力,需对商业模式进行创新发展.本文通过梳理充电基础设施产业链及产业链中各利益相关者之间的关系,分析充电基础设施以各利益相关者为主导的运营模式,由此设计集\"车-桩-网-源\"为一体的充电基础设施建设开放式服务平台的商业模式,该商业模式从B2C自主、B2C... 相似文献
99.
100.
Many metropolitan areas have started programs to monitor the performance of their transportation network and to develop systems to measure and manage congestion. This paper presents a review of issues, procedures, and examples of application of geographic information system (GIS) technology to the development of congestion management systems (CMSs). The paper examines transportation network performance measures and discusses the benefit of using travel time as a robust, easy to understand performance measure. The paper addresses data needs and examines the use of global positioning system (GPS) technology for the collection of travel time and speed data. The paper also describes GIS platforms and sample user interfaces to process the data collected in the field, data attribute requirements and database schemas, and examples of application of GIS technology for the production of maps and tabular reports. 相似文献