首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1332篇
  免费   74篇
公路运输   623篇
综合类   156篇
水路运输   220篇
铁路运输   301篇
综合运输   106篇
  2024年   3篇
  2023年   5篇
  2022年   31篇
  2021年   52篇
  2020年   60篇
  2019年   34篇
  2018年   36篇
  2017年   35篇
  2016年   43篇
  2015年   60篇
  2014年   115篇
  2013年   64篇
  2012年   129篇
  2011年   115篇
  2010年   103篇
  2009年   56篇
  2008年   68篇
  2007年   98篇
  2006年   88篇
  2005年   49篇
  2004年   19篇
  2003年   30篇
  2002年   18篇
  2001年   18篇
  2000年   10篇
  1999年   6篇
  1998年   5篇
  1997年   12篇
  1996年   10篇
  1995年   6篇
  1994年   11篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
排序方式: 共有1406条查询结果,搜索用时 125 毫秒
31.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   
32.
针对不适应THDS轴温探测系统的长大货物车,分析论证了现车轴箱改进方案适应THDS轴温探测的不足,并提出了轴箱优化方案。经计算、试验和装车验证表明,新轴箱可行、有效、安全,满足THDS轴温探测要求,保证了长大货物车运输安全。  相似文献   
33.
Driving volatility captures the extent of speed variations when a vehicle is being driven. Extreme longitudinal variations signify hard acceleration or braking. Warnings and alerts given to drivers can reduce such volatility potentially improving safety, energy use, and emissions. This study develops a fundamental understanding of instantaneous driving decisions, needed for hazard anticipation and notification systems, and distinguishes normal from anomalous driving. In this study, driving task is divided into distinct yet unobserved regimes. The research issue is to characterize and quantify these regimes in typical driving cycles and the associated volatility of each regime, explore when the regimes change and the key correlates associated with each regime. Using Basic Safety Message (BSM) data from the Safety Pilot Model Deployment in Ann Arbor, Michigan, two- and three-regime Dynamic Markov switching models are estimated for several trips undertaken on various roadway types. While thousands of instrumented vehicles with vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication systems are being tested, nearly 1.4 million records of BSMs, from 184 trips undertaken by 71 instrumented vehicles are analyzed in this study. Then even more detailed analysis of 43 randomly chosen trips (N = 714,340 BSM records) that were undertaken on various roadway types is conducted. The results indicate that acceleration and deceleration are two distinct regimes, and as compared to acceleration, drivers decelerate at higher rates, and braking is significantly more volatile than acceleration. Different correlations of the two regimes with instantaneous driving contexts are explored. With a more generic three-regime model specification, the results reveal high-rate acceleration, high-rate deceleration, and cruise/constant as the three distinct regimes that characterize a typical driving cycle. Moreover, given in a high-rate regime, drivers’ on-average tend to decelerate at a higher rate than their rate of acceleration. Importantly, compared to cruise/constant regime, drivers’ instantaneous driving decisions are more volatile both in “high-rate” acceleration as well as “high-rate” deceleration regime. The study contributes to analyzing volatility in short-term driving decisions, and how changes in driving regimes can be mapped to a combination of local traffic states surrounding the vehicle.  相似文献   
34.
Fidelity has been a critical concern of researchers throughout the history of driving simulation. Understanding the limits of a driving simulation system is a prerequisite for conducting valid driving simulator studies. This paper proposes a novel and interdisciplinary methodology to ensure validity of studies using driving simulators (primarily for traffic control devices and other object detection tasks) based on the visual limits of human sensory and perceptual capabilities, and the characteristics of raster graphics. This methodology decomposes the perceptual issues of a stimulus into perceptual issues of different visual properties like luminance, hue, or text of the stimulus. By systematically analyzing the mechanism of human vision in driving simulators, the perceptual principle is proposed to ensure perceivable visual details in human-in-the-loop driving simulation systems. Additionally, the graphic principle is proposed to ensure perceivable features of a target object in the virtual driving environment. Both principles quantify the minimum requirements of visual fidelity with two measurements: angular resolution and matrix dimensions. The enriched results from existing pertinent studies are analyzed and organized to yield support of both principles. This research focuses on the minimum requirements for four factors; namely the visual acuity of drivers, the specifications of display systems, the configurations of graphics systems, and the design of virtual scenarios, as well as the relationship among all these factors to assess the visual fidelity in driving simulation systems. Within the realm of human perception, this work can provide criteria for proper design, calibration, and usage of driving simulators.  相似文献   
35.
Imposing driving restrictions is becoming increasingly popular as a policy intended to control urban air pollution. Existing studies on this topic offer highly mixed observations, and each study tends to focus on only one city. In this paper, we used 11 Chinese cities with driving restrictions as the treatment group, and compared them to other cities that did not implement the policy. Based on a propensity score matching and difference-in-difference analysis, we found no evidence of a decrease in PM10 concentrations in cities after they implemented driving restrictions. This finding may be attributed to an increase in the number of cars in these cities after implementing driving restrictions, but we also found no evidence of an improvement in air quality for a given number of cars after implementation of the policies.  相似文献   
36.
介绍现浇混凝土薄壁筒桩技术以及与其它形式桩基技术的比较.  相似文献   
37.
利用超声冲击设备对EA4T车轴钢进行了表面强化处理.采利用金相显微镜和透射电镜表征了车轴钢表面结构的变化,并对超声冲击处理前后试样表面粗糙度和显微硬度进行了分析.结果表明:经超声冲击处理后,试样表面发生了剧烈的塑性变形,晶粒明显细化,显微硬度呈梯度化.随着超声冲击功率的增加,变形层厚度增加,粗糙度减小,表面硬度增大;与未经超声冲击处理的试样相比,在超声冲击功率180瓦作用下,表面粗糙度降低了6.5倍,试样的表面硬度提高了25%,变形层厚度大约为80μm.  相似文献   
38.
船舶艉轴机械密封环温度场与变形的理论研究   总被引:1,自引:1,他引:0  
在船舶艉轴的机械密封中,不同材料的配合将产生不同数值的磨损和变形量。基于ANSYS有限元软件,建立橡胶-硬质合金密封的二维热-力耦合模型,分析力与温度场、力与变形之间关系。结果表明,静环橡胶的温度最高点和磨损严重区域发生在二维耦合模型中接触端面的上端面;动环和静环由最初的全端面接触变为部分接触,间隙呈锥度形状;在二维耦合模型中,随着端面比压的增大,下端面变形量增加的梯度明显大于上端面变形量增加的梯度。  相似文献   
39.
定距桨直联稳频型轴带发电机系统是在定距桨船舶上,通过双速比或多速比齿轮箱与自励无刷同步发电机相联接而成。其通过在主机遥控系统、主机控制与安保系统、电站管理系统、齿轮箱控制系统之间建立起复杂的逻辑关系,使相关控制、报警信号在不同系统中有序合理传递和反馈,从而达到建立一套低成本、硬件结构简单、电源品质高、能满足CCS、DNVGL等各大船级社无人机舱要求的新型定距桨直联稳频型轴带发电机系统FPP-DL-FSSG。文章介绍了该系统的作用、软硬件的构成和特点,分析了其优缺点并提出使用时的注意事项。对航运企业实行低成本运营以及节能减排具有重要意义。  相似文献   
40.
冰载荷冲击下的船舶推进轴系瞬态扭转振动响应分析   总被引:1,自引:0,他引:1  
传统的推进轴系扭转振动响应计算聚焦于稳态响应,而传递矩阵法、系统矩阵法,可以取得满意的稳态计算结果,但无法处理冰区船舶、海洋工程船舶所遇到的变载荷、变惯量等瞬态工况。为了克服频域扭振计算方法在处理瞬态条件扭振问题的局限性,使用 Newmark 法从时域求解轴系扭转振动微分方程组,基于该算法对某船推进轴系在冰载荷作用下的瞬态响应做了数值计算。其结果表明,在冰载荷冲击下,轴系瞬态扭矩比稳态扭矩大;通过时频分析,在冰载荷作用期间,出现了明显的螺旋桨叶频激励,因此须避免冰载荷激励产生轴系扭转振动的叶次共振。 Newmark 法扭振计算结果与实船测试结果对比表明,该方法在稳态响应计算和时域曲线上都与实际测量结果基本一致,具有工程实用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号