首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5077篇
  免费   365篇
公路运输   1729篇
综合类   1612篇
水路运输   866篇
铁路运输   902篇
综合运输   333篇
  2024年   23篇
  2023年   43篇
  2022年   104篇
  2021年   199篇
  2020年   190篇
  2019年   118篇
  2018年   115篇
  2017年   127篇
  2016年   153篇
  2015年   183篇
  2014年   462篇
  2013年   361篇
  2012年   448篇
  2011年   482篇
  2010年   387篇
  2009年   325篇
  2008年   321篇
  2007年   432篇
  2006年   371篇
  2005年   173篇
  2004年   113篇
  2003年   71篇
  2002年   52篇
  2001年   46篇
  2000年   28篇
  1999年   18篇
  1998年   15篇
  1997年   17篇
  1996年   12篇
  1995年   15篇
  1994年   14篇
  1993年   5篇
  1992年   10篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
排序方式: 共有5442条查询结果,搜索用时 31 毫秒
91.
This paper presents a new mathematical framework for obtaining quantitative safety measure using macroscopic as well as microscopic traffic data. The safety surrogate obtained from the macroscopic data is in terms of analysis performed on vehicle trajectories obtained from the macroscopic data. This method of obtaining safety measure can be used for many different types of applications. The safety surrogate for the traffic dynamics are developed in terms of a new concept of Negative Speed Differentials (NSD) that involve a convolution of vehicle speed function obtained from vehicle trajectories and then performing the integration of the square of the output for its negative values. The framework is applicable to microscopic traffic dynamics as well where we can use car following models for microscopic dynamics or the LWR model for macroscopic dynamics. This paper then presents the use of this new safety surrogate on the development of a feedback control law for controlling traffic in work zones using Dynamic Message Signs. A hybrid dynamics model is used to represent the switching dynamics due to changing DMS messages. A feedback control design for choosing those messages is presented as well as a simple simulation example to show its application.  相似文献   
92.
Parents compete for high-quality education for their children by enrolling them in good schools. However, in a Chinese mega-city like Beijing, three factors jointly lead to the spatial separation between schools and homes: the centralized public goods provision mechanism, the historical dependency in school location, and the constrained supply of housing in downtown. Without an adequate number of school buses, this spatial separation of schools and homes triggers the numerous long-distance driving-to-school trips by private vehicle during workday morning rush hours in Beijing. We use the start and end dates of “school holiday” as exogenous repeated shocks to the aggregate traffic congestion, and employ the two-stage least squares (2SLS) regression approach to examine the congestion and pollution consequences of such driving-to-school trips in Beijing. We find that, all else being equal, workdays during school holidays have a traffic congestion index 20% lower than that of non-school-holiday workdays. Such a sharp reduction in congestion leads to a significant decrease in PM10 concentration. Policymakers should lower such “extra” congestion and environmental costs via optimizing the spatial balance between school supply and demand.  相似文献   
93.
Bus fuel economy is deeply influenced by the driving cycles, which vary for different route conditions. Buses optimized for a standard driving cycle are not necessarily suitable for actual driving conditions, and, therefore, it is critical to predict the driving cycles based on the route conditions. To conveniently predict representative driving cycles of special bus routes, this paper proposed a prediction model based on bus route features, which supports bus optimization. The relations between 27 inter-station characteristics and bus fuel economy were analyzed. According to the analysis, five inter-station route characteristics were abstracted to represent the bus route features, and four inter-station driving characteristics were abstracted to represent the driving cycle features between bus stations. Inter-station driving characteristic equations were established based on the multiple linear regression, reflecting the linear relationships between the five inter-station route characteristics and the four inter-station driving characteristics. Using kinematic segment classification, a basic driving cycle database was established, including 4704 different transmission matrices. Based on the inter-station driving characteristic equations and the basic driving cycle database, the driving cycle prediction model was developed, generating drive cycles by the iterative Markov chain for the assigned bus lines. The model was finally validated by more than 2 years of acquired data. The experimental results show that the predicted driving cycle is consistent with the historical average velocity profile, and the prediction similarity is 78.69%. The proposed model can be an effective way for the driving cycle prediction of bus routes.  相似文献   
94.
Marine transportation is a vital component of the world’s economy and transportation network. The number of people using passenger ships around the globe is increasing worldwide. Similar to other transportation systems, passenger safety is critical in maritime shipment. As emergency evacuation processes for ships are highly different from and more complicated than those for buildings and other vehicles, many researchers have published a vast range of documents related to this peculiar research area. However, there is a tangible lack of sufficient literature review studies that investigate marine emergency evacuation (MEE). That being the case, the potential of marine transportation and the effect of emergency evacuation operation on life safety have inspired the proposal of this study. This paper offers a review of the available literature on MEE modelling, analysis and planning during the period from 1973 to 2017 using a systematic approach. After reviewing relevant academic journals, peer-reviewed conference papers, and technical reports of agencies, relevant literature is analysed. In addition, the literature review is extended by means of proposing a framework methodology which considers different possible conditions and situations during MEE. Finally, insights for ship managers and policymakers are discussed and potential future research directions are identified.  相似文献   
95.
福州城市轨道交通建设规模不断增大,复杂的地质、环境条件以及众多工种施工的交叉作业和人员活动,给安全生产带来挑战。针对建设全过程安全管控的具体业务关系和需求分析,梳理和固化工作岗位、职责、流程、响应、整改等安全管理的事项和要求,强化对管控过程的追溯和考核管理。研究信息平台的业务需求、平台架构、网络拓扑、功能模块、数据库设计方法和实现思路,利用Ssm框架、Quartz框架、Encache技术以及SQLServer数据库技术,设计开发基于B/S模式的城市轨道交通安全管控信息系统,应用于在建的5条线路。信息平台的应用,可实现安全管理的标准化、科学化和精细化,极大地提高管理水平和工作效率。  相似文献   
96.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   
97.
When vehicles share their status information with other vehicles or the infrastructure, driving actions can be planned better, hazards can be identified sooner, and safer responses to hazards are possible. The Safety Pilot Model Deployment (SPMD) is underway in Ann Arbor, Michigan; the purpose is to demonstrate connected technologies in a real-world environment. The core data transmitted through Vehicle-to-Vehicle and Vehicle-to-Infrastructure (or V2V and V2I) applications are called Basic Safety Messages (BSMs), which are transmitted typically at a frequency of 10 Hz. BSMs describe a vehicle’s position (latitude, longitude, and elevation) and motion (heading, speed, and acceleration). This study proposes a data analytic methodology to extract critical information from raw BSM data available from SPMD. A total of 968,522 records of basic safety messages, gathered from 155 trips made by 49 vehicles, was analyzed. The information extracted from BSM data captured extreme driving events such as hard accelerations and braking. This information can be provided to drivers, giving them instantaneous feedback about dangers in surrounding roadway environments; it can also provide control assistance. While extracting critical information from BSMs, this study offers a fundamental understanding of instantaneous driving decisions. Longitudinal and lateral accelerations included in BSMs were specifically investigated. Varying distributions of instantaneous longitudinal and lateral accelerations are quantified. Based on the distributions, the study created a framework for generating alerts/warnings, and control assistance from extreme events, transmittable through V2V and V2I applications. Models were estimated to untangle the correlates of extreme events. The implications of the findings and applications to connected vehicles are discussed in this paper.  相似文献   
98.
随着科技的进步及项目管理水平的提高,BIM技术应运而生。本文以清华珠三角研究院粤港澳大湾区创新基地项目为依托,从应用目标、应用前准备工作、前期策划管理、技术管理、质量安全管理、物资设备管理、进度管理、经济成本管理等方面开展BIM技术在公建项目施工中的应用研究,结果表明:使用BIM技术,使项目管理走向精细化、全面化、高效化,并提高质量标准,增加安全保障,减少项目成本,提高项目利润率;同时与AI技术相结合,使BIM技术更加具有简便性,产出更大效益。  相似文献   
99.
交通安全,涉及到人、车以及道路和环境等很多因素。近年来,因为各种原因使得有关单位以及人员将更多的将精力放在人、车、道路这几个因素上,对道路交通环境没有过多的考虑和研究。深入研究道路交通环境,有利于道路交通的安全,文章通过对其的研究和分析,得出有关道路交通环境对交通安全的影响和解决措施,对于防止道路交通安全事故具有重要意义。同时为人们的生命财产的安全提供保障、对构建社会主义和谐社会具有很大帮助。  相似文献   
100.
Driving volatility captures the extent of speed variations when a vehicle is being driven. Extreme longitudinal variations signify hard acceleration or braking. Warnings and alerts given to drivers can reduce such volatility potentially improving safety, energy use, and emissions. This study develops a fundamental understanding of instantaneous driving decisions, needed for hazard anticipation and notification systems, and distinguishes normal from anomalous driving. In this study, driving task is divided into distinct yet unobserved regimes. The research issue is to characterize and quantify these regimes in typical driving cycles and the associated volatility of each regime, explore when the regimes change and the key correlates associated with each regime. Using Basic Safety Message (BSM) data from the Safety Pilot Model Deployment in Ann Arbor, Michigan, two- and three-regime Dynamic Markov switching models are estimated for several trips undertaken on various roadway types. While thousands of instrumented vehicles with vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication systems are being tested, nearly 1.4 million records of BSMs, from 184 trips undertaken by 71 instrumented vehicles are analyzed in this study. Then even more detailed analysis of 43 randomly chosen trips (N = 714,340 BSM records) that were undertaken on various roadway types is conducted. The results indicate that acceleration and deceleration are two distinct regimes, and as compared to acceleration, drivers decelerate at higher rates, and braking is significantly more volatile than acceleration. Different correlations of the two regimes with instantaneous driving contexts are explored. With a more generic three-regime model specification, the results reveal high-rate acceleration, high-rate deceleration, and cruise/constant as the three distinct regimes that characterize a typical driving cycle. Moreover, given in a high-rate regime, drivers’ on-average tend to decelerate at a higher rate than their rate of acceleration. Importantly, compared to cruise/constant regime, drivers’ instantaneous driving decisions are more volatile both in “high-rate” acceleration as well as “high-rate” deceleration regime. The study contributes to analyzing volatility in short-term driving decisions, and how changes in driving regimes can be mapped to a combination of local traffic states surrounding the vehicle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号