首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1643篇
  免费   5篇
公路运输   885篇
综合类   100篇
水路运输   81篇
铁路运输   201篇
综合运输   381篇
  2023年   2篇
  2022年   29篇
  2021年   60篇
  2020年   94篇
  2019年   23篇
  2018年   79篇
  2017年   59篇
  2016年   73篇
  2015年   99篇
  2014年   116篇
  2013年   53篇
  2012年   120篇
  2011年   79篇
  2010年   52篇
  2009年   65篇
  2008年   50篇
  2007年   109篇
  2006年   110篇
  2005年   96篇
  2004年   77篇
  2003年   46篇
  2002年   30篇
  2001年   26篇
  2000年   18篇
  1999年   14篇
  1998年   17篇
  1997年   15篇
  1996年   11篇
  1995年   11篇
  1994年   9篇
  1993年   6篇
排序方式: 共有1648条查询结果,搜索用时 31 毫秒
61.
The aim of the German Government is the licensing of one million electric vehicles (EV) in Germany until 2020. However, the number of battery electric vehicles (EVs) today still is just above 25,000. There are several reasons for deciding against an EV, but especially low battery ranges as well as too long perceived charging duration inhibit the usage of an EV. To eliminate the negative influence of these two reasons on the decision to purchase an EV, a novel charging technology is established. The rapid-charging technology enables the user to recharge the battery to 80% of its state of charge (SOC) within 20–30 min. For the examination of the technology’s impact from (potential) user’s perspective, users and nonusers of battery electric vehicles were questioned about the perceived additional value of public rapid-charging infrastructure by taking into account different trip purposes and running comparisons to regular charging options. The results show an increased perceived value especially for trips with leisure purpose, considering their share of all trip purposes in Germany, according to the MiD 2008. In order to increase the number of licensed EVs in Germany, the study’s results also suggest further dissemination of information on rapid charging which might influence the perceived usefulness of the technology and consequentially the perceived usefulness of an EV.  相似文献   
62.
This study describes an adaptable planning tool that examines potential change in vehicle miles travelled (VMT) growth and corresponding traffic safety outcomes in two urbanized areas, Baton Rouge and New Orleans, based on built environment, economic and demographic variables. This model is employed to demonstrate one aspect of the potential benefits of growth management policy implementation aimed at curbing VMT growth, and to establish targets with which to measure the effectiveness of those policies through a forecasting approach. The primary objective of this research is to demonstrate the need to break with current trends in order to achieve future goals, and to identify specific policy targets for fuel prices, population density, and transit service within the two study regions. Models indicate based on medium growth scenarios, Baton Rouge will experience a 9 percent increase in VMTs and New Orleans will experience 10 percent growth. This translates to corresponding increases in crashes, injuries and fatalities. The paper provides forecasts for planners and engineers to consider an alternative future, based on desired goals to reduce VMTs and therefore improve safety outcomes. A constrained-forecast model shows a cap on VMTs and crash rates is achievable through policy that increases fuel prices, population density and annual transit passenger miles per capita at reasonable levels through a growth management approach.  相似文献   
63.
The increase of public attention, scientific research and political interest in environmental problems associated with transportation has provided the motivation for re-invention of electric vehicles. However the usage of grid-dependent EVs with a high-carbon electricity grid might produce more damage to the environment. This study aims to provide an environmental impact comparison of ICEVs, HEVs and EVs during their usage cycle, by modeling their energy consumption (electricity or fuel) and the supply chains of the supplied energy, (well-to-wheel) based on a life cycle assessment. The results show that running EVs with the existing mixed sources of electrical energy produce larger impacts on the environment 60% of the time; when compared to HEVs. When compared to ICEVs, EVs produce a larger environmental impact on 7 out of 15 environmental impact categories. Overall the environmental impacts of EVs are substantial based on the well-to-wheel analysis. It will continue to be so if no change is made to the methods of electricity generation in the near future. Given that the environmental profile of EVs is linked with the existing national electricity generation mix, the national electricity supply must be made cleaner before the electrification of the urban transport system.  相似文献   
64.
Active control of electric powertrains is challenging, due to the fact that backlash and structural flexibility in transmission components can cause severe performance degradation or even instability of the control system. Furthermore, high impact forces in transmissions reduce driving comfort and possibly lead to damage of the mechanical elements in contact. In this paper, a nonlinear electric powertrain is modelled as a piecewise affine (PWA) system. The novel receding horizon sliding control (RHSC) idea is extended to constrained PWA systems and utilised to systematically address the active control problem for electric powertrains. Simulations are conducted in Matlab/Simulink in conjunction with the high fidelity Carsim software. RHSC shows superior jerk suppression and target wheel speed tracking performance as well as reduced computational cost over classical model predictive control (MPC). This indicates the newly proposed RHSC is an effective method to address the active control problem for electric powertrains.  相似文献   
65.
The vehicle–track coupled system has a random nature in the time–space domain. This paper proposes a computational model to analyse the temporal–spatial stochastic vibrations of vehicle–track systems, where the vehicle–track system is divided into a vehicle subsystem, track subsystem, and interfacial subsystem between the wheel and rail. In this model, the time-varying randomicity of dynamical parameters of the vehicle system, correlation, and randomness of the track structural parameters in the time–space joint dimensions, and randomness of the track random irregularities are considered. A probability dimension-reduction method was used to randomly combine different random variables. Furthermore, the probability density evolution method was applied to solve the delivery problem of probabilities between excitation inputs and response outputs. The temporal–spatial stochastic vibrations of the vehicle–track system with different coefficients of variation were studied, in which we assumed that the dynamic parameters obeyed the normal distribution, and the stochastic simulation method of the track random irregularities is probed into. The calculated results from this model are consistent with the actual measured results and physical conceptions. Thus, the temporal–spatial stochastic evolutionary mechanism can be explored, and the limits of dynamic indices can be formulated by using this developed model.  相似文献   
66.
Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.  相似文献   
67.
Race car drivers can offer insights into vehicle control during extreme manoeuvres; however, little data from race teams is publicly available for analysis. The Revs Program at Stanford has built a collection of vehicle dynamics data acquired from vintage race cars during live racing events with the intent of making this database publicly available for future analysis. This paper discusses the data acquisition, post-processing, and storage methods used to generate the database. An analysis of available data quantifies the repeatability of professional race car driver performance by examining the statistical dispersion of their driven paths. Certain map features, such as sections with high path curvature, consistently corresponded to local minima in path dispersion, quantifying the qualitative concept that drivers anchor their racing lines at specific locations around the track. A case study explores how two professional drivers employ distinct driving styles to achieve similar lap times, supporting the idea that driving at the limits allows a family of solutions in terms of paths and speed that can be adapted based on specific spatial, temporal, or other constraints and objectives.  相似文献   
68.
解读《电加热道岔融雪系统设备》与《客运专线铁路信号产品暂行技术条件汇编——电加热道岔融雪系统设备》标准的共性部分,并从编制背景、标准定位、技术要求、试验方法和检验规则等方面,分析两者之间的差异性.  相似文献   
69.
能源危机和环境污染问题已成全球关注的焦点,新能源汽车顺势而为,纯电动汽车采用纯电驱动,更加节能、环保。随着纯电动汽车的发展,车辆的安全性、续航里程能力得到了关注,动力电池的性能很大程度上影响着整车性能,为了提升动力电池系统性能,避免热失控,研究高性能动力电池热管理系统至关重要。  相似文献   
70.
Fuel-switching personal transportation from gasoline to electricity offers many advantages, including lower noise, zero local air pollution, and petroleum-independence. But alleviations of greenhouse gas (GHG) emissions are more nuanced, due to many factors, including the car’s battery range. We use GPS-based trip data to determine use type-specific, GHG-optimized ranges. The dataset comprises 412 cars and 384,869 individual trips in Ann Arbor, Michigan, USA. We use previously developed algorithms to determine driver types, such as using the car to commute or not. Calibrating an existing life cycle GHG model to a forecast, low-carbon grid for Ann Arbor, we find that the optimum range varies not only with the drive train architecture (plugin-hybrid versus battery-only) and charging technology (fast versus slow) but also with the driver type. Across the 108 scenarios we investigated, the range that yields lowest GHG varies from 65 km (55+ year old drivers, ultrafast charging, plugin-hybrid) to 158 km (16–34 year old drivers, overnight charging, battery-only). The optimum GHG reduction that electric cars offer – here conservatively measured versus gasoline-only hybrid cars – is fairly stable, between 29% (16–34 year old drivers, overnight charging, battery-only) and 46% (commuters, ultrafast charging, plugin-hybrid). The electrification of total distances is between 66% and 86%. However, if cars do not have the optimum range, these metrics drop substantially. We conclude that matching the range to drivers’ typical trip distances, charging technology, and drivetrain is a crucial pre-requisite for electric vehicles to achieve their highest potential to reduce GHG emissions in personal transportation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号