全文获取类型
收费全文 | 5667篇 |
免费 | 442篇 |
专业分类
公路运输 | 2716篇 |
综合类 | 1375篇 |
水路运输 | 336篇 |
铁路运输 | 1365篇 |
综合运输 | 317篇 |
出版年
2024年 | 24篇 |
2023年 | 69篇 |
2022年 | 264篇 |
2021年 | 415篇 |
2020年 | 313篇 |
2019年 | 186篇 |
2018年 | 144篇 |
2017年 | 178篇 |
2016年 | 194篇 |
2015年 | 227篇 |
2014年 | 387篇 |
2013年 | 268篇 |
2012年 | 602篇 |
2011年 | 445篇 |
2010年 | 295篇 |
2009年 | 269篇 |
2008年 | 335篇 |
2007年 | 352篇 |
2006年 | 324篇 |
2005年 | 204篇 |
2004年 | 163篇 |
2003年 | 111篇 |
2002年 | 75篇 |
2001年 | 69篇 |
2000年 | 29篇 |
1999年 | 13篇 |
1998年 | 18篇 |
1997年 | 38篇 |
1996年 | 42篇 |
1995年 | 24篇 |
1994年 | 11篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 8篇 |
1990年 | 6篇 |
1988年 | 1篇 |
排序方式: 共有6109条查询结果,搜索用时 46 毫秒
111.
圆锥指数法(WES)是一种用来快速判断车辆通过性的方法。江苏沿海滩涂风力资源丰富,但滩涂土壤松软,普通车辆难以行驶,为保证风电开发施工设备在江苏沿海滩涂安全行驶通过而不发生陷车,三一电气有限责任公司自行设计了一种圆锥指数仪,用以测量滩涂土壤圆锥指数,判断车辆通过性。对响水滩涂T4风机位附近土壤的圆锥指数进行测量,得到了该区域扰动和非扰动两种情况下的土壤圆锥指数曲线,并对滩涂履带运输车的车辆圆锥指数进行了理论计算,根据试验和理论计算的结果进行了滩涂履带运输车实地行驶试验。试验表明,该型运输车在此区域通过性良好。该试验也为评估其它各种车辆在该地区的行驶通过性提供了数据参考。 相似文献
112.
The convergence of information and communication technologies (ICT) with automotive technologies has already resulted in automation features in road vehicles and this trend is expected to continue in the future owing to consumer demand, dropping costs of components, and improved reliability. While the automation features that have taken place so far are mainly in the form of information and driver warning technologies (classified as level I pre-2010), future developments in the medium term (level II 2010–2025) are expected to exhibit connected cognitive vehicle features and encompass increasing degree of automation in the form of advanced driver assistance systems. Although autonomous vehicles have been developed for research purposes and are being tested in controlled driving missions, the autonomous driving case is only a long term (level III 2025 +) scenario. This paper contributes knowledge on technological forecasts regarding automation, policy challenges for each level of technology development and application context, and the essential instrument of cost-effectiveness for policy analysis which enables policy decisions on the automation systems to be assessed in a consistent and balanced manner. The cost of a system per vehicle is viewed against its effectiveness in meeting policy objectives of improving safety, efficiency, mobility, convenience and reducing environmental effects. Example applications are provided that illustrate the contribution of the methodology in providing information for supporting policy decisions. Given the uncertainties in system costs as well as effectiveness, the tool for assessing policies for future generation features probabilistic and utility-theoretic analysis capability. The policy issues defined and the assessment framework enable the resolution of policy challenges while allowing worthy innovative automation in driving to enhance future road transportation. 相似文献
113.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):295-322
One way of addressing traffic congestion is by efficiently utilizing the existing highway infrastructure. Narrow tilting vehicles that need a reduced width lane can be part of the solution if they can be designed to be safe, stable, and easy to operate. In this paper, a control system that stabilizes the tilt mode of such a vehicle without affecting the handling of the vehicle is proposed. This control system is a combination of two different types of control schemes known as steering tilt control (STC) and direct tilt control (DTC) systems. First, different existing variations of both STC and DTC systems are considered and their shortcomings analysed. Modified control schemes are then suggested to overcome the deficiencies. Then a new method of integrating these two control schemes that guarantees smooth switchover between the controllers as a function of vehicle velocity is proposed. The performance of the proposed STC, DTC, and integrated systems is evaluated by carrying out simulations for different operating conditions and some experimental work. The design of a second-generation narrow tilting vehicle on which the developed control system has been implemented is presented. 相似文献
114.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):661-690
This paper presents a vehicle adaptive cruise control algorithm design with human factors considerations. Adaptive cruise control (ACC) systems should be acceptable to drivers. In order to be acceptable to drivers, the ACC systems need to be designed based on the analysis of human driver driving behaviour. Manual driving characteristics are investigated using real-world driving test data. The goal of the control algorithm is to achieve naturalistic behaviour of the controlled vehicle that would feel natural to the human driver in normal driving situations and to achieve safe vehicle behaviour in severe braking situations in which large decelerations are necessary. A non-dimensional warning index and inverse time-to-collision are used to evaluate driving situations. A confusion matrix method based on natural driving data sets was used to tune control parameters in the proposed ACC system. Using a simulation and a validated vehicle simulator, vehicle following characteristics of the controlled vehicle are compared with real-world manual driving radar sensor data. It is shown that the proposed control strategy can provide with natural following performance similar to human manual driving in both high speed driving and low speed stop-and-go situations and can prevent the vehicle-to-vehicle distance from dropping to an unsafe level in a variety of driving conditions. 相似文献
115.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):803-829
In this paper, we examine the lateral dynamics emulation capabilities of an automotive vehicle equipped with four-wheel steering. We first demonstrate that the lateral dynamics of a wide range of vehicles can be emulated, either with little or with no modification on the test vehicle. Then we discuss a sliding mode controller for active front and rear wheel steering, in order to track some given yaw rate and side-slip angle. Analytically, it is shown that the proposed controller is robust to plant parameter variations by±10%, and is invariant to unmeasurable wind disturbance. The performance of the sliding mode controller is evaluated via computer simulations to verify its robustness to vehicle parameter variations and delay in the loop, and its insensitivity to wind disturbance. Finally, the emulation of a bus, a van, and two commercially available passenger vehicles is demonstrated in an advanced nonlinear simulator. 相似文献
116.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(2):235-261
Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses – the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle–track–soil interaction – have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle–track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave. 相似文献
117.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):361-386
Passive fluidically coupled suspensions have been considered to offer a promising alternative solution to the challenging design of a vehicle suspension system. A theoretical foundation, however, has not been established for fluidically coupled suspension to facilitate its broad applications to various vehicles. The first part of this study investigates the fundamental issues related to feasibility and properties of the passive, full-vehicle interconnected, hydro-pneumatic suspension configurations using both analytical and simulation techniques. Layouts of various interconnected suspension configurations are illustrated based on two novel hydro-pneumatic suspension strut designs, both of which provide a compact design with a considerably large effective working area. A simplified measure, vehicle property index, is proposed to permit a preliminary evaluation of different interconnected suspension configurations using qualitative scaling of the bounce-, roll-, pitch- and warp-mode stiffness properties. Analytical formulations for the properties of unconnected and three selected X-coupled suspension configurations are derived, and simulation results are obtained to illustrate their relative stiffness and damping properties in the bounce, roll, pitch and warp modes. The superior design flexibility feature of the interconnected hydro-pneumatic suspension is also discussed through sensitivity analysis of a design parameter, namely the annular piston area of the strut. The results demonstrate that a full-vehicle interconnected hydro-pneumatic suspension could provide enhanced roll- and pitch-mode stiffness and damping, while retaining the soft bounce- and warp-mode properties. Such an interconnected suspension thus offers considerable potential in realising enhanced decoupling among the different suspension modes. 相似文献
118.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):967-981
Tram vehicles mainly operate on street tracks where sometimes misguidance in switches occurs due to unfavourable conditions. Generally, in this situation, the first running gear of the vehicle follows the bend track while the next running gears continue straight ahead. This leads to a constraint that can only be solved if the vehicle's articulation is damaged or the wheel derails. The last-mentioned situation is less critical in terms of safety and costs. Five different tram types, one of them high floor, the rest low floor, were examined analytically. Numerical simulation was used to determine which wheel would be the first to derail and what level of force is needed in the articulation area between two carbodies to make a tram derail. It was shown that with pure analytical simulation, only an idea of which tram type behaves better or worse in such a situation can be gained, while a three-dimensional computational simulation gives more realistic values for the forces that arise. Three of the four low-floor tram types need much higher articulation forces to make a wheel derail in a switch misguidance situation. One particular three-car type with two single-axle running gears underneath the centre car must be designed to withstand nearly three times higher articulation forces than a conventional high-floor articulated tram. Tram designers must be aware of that and should design the carbody accordingly. 相似文献
119.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(1):149-166
The familiar two-axle bicycle model and associated basic concepts of vehicle handling are reviewed and used to introduce minor changes in convention from the literature. The two-axle model is extended to a three-axle vehicle to illustrate the effectiveness of the notation combined with a simplifying mathematical identity found in the two-axle vehicle literature. A generalised model is then developed that produces dynamic equations of motion by inspection for a vehicle with an arbitrary number of steerable and non-steerable axles. Furthermore, the vehicle dynamic concepts of understeer and wheelbase are generalised and can be directly computed for various arbitrary vehicle configurations. 相似文献
120.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):943-963
A vehicle following control law, based on the model predictive control method, to perform transition manoeuvres (TMs) for a nonlinear adaptive cruise control (ACC) vehicle is presented in this paper. The TM controller ultimately establishes a steady-state following distance behind a preceding vehicle to avoid collision, keeping account of acceleration limits, safe distance, and state constraints. The vehicle dynamics model is for continuous-time domain and captures the real dynamics of the sub-vehicle models for steady-state and transient operations. The ACC vehicle can execute the TM successfully and achieves a steady-state in the presence of complex dynamics within the constraint boundaries. 相似文献