首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495篇
  免费   45篇
公路运输   206篇
综合类   242篇
水路运输   12篇
铁路运输   7篇
综合运输   73篇
  2024年   5篇
  2023年   6篇
  2022年   17篇
  2021年   15篇
  2020年   26篇
  2019年   18篇
  2018年   25篇
  2017年   15篇
  2016年   33篇
  2015年   22篇
  2014年   43篇
  2013年   33篇
  2012年   52篇
  2011年   49篇
  2010年   28篇
  2009年   38篇
  2008年   30篇
  2007年   28篇
  2006年   26篇
  2005年   14篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
排序方式: 共有540条查询结果,搜索用时 875 毫秒
321.
This paper describes a risk management algorithm for rear-side collision avoidance. The proposed risk management algorithm consists of a supervisor and a coordinator. The supervisor is designed to monitor collision risks between the subject vehicle and approaching vehicle in the adjacent lane. An appropriate criterion of intervention, which satisfies high acceptance to drivers through the consideration of a realistic traffic, has been determined based on the analysis of the kinematics of the vehicles in longitudinal and lateral directions. In order to assist the driver actively and increase driver's safety, a coordinator is designed to combine lateral control using a steering torque overlay by motor-driven power steering and differential braking by vehicle stability control. In order to prevent the collision while limiting actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort, the Lyapunov theory and linear matrix inequalities based optimisation methods have been used. The proposed risk management algorithm has been evaluated via simulation using CarSim and MATLAB/Simulink.  相似文献   
322.
针对Canny边缘检测阈值在车道线识别中不易选取的问题,提出了基于Otsu算法实现自适应Canny边缘检测的方法。实验验证表明,其对远视野道路图像可以获得良好的边缘检测效果,而对近视野道路图像效果较差。进一步提出了目标区域补偿策略改进上述算法。结合Hough变换算法,实现了车道线的识别。实验结果表明,改进的算法可以达到实时获取车道线的要求。  相似文献   
323.
浦东国际机场北通道关键技术研究   总被引:1,自引:0,他引:1  
介绍了上海浦东国际机场北通道工程概况,从规模确定、工程选线、高架景观和排水路面的应用等方面主要涉及的一些关键技术问题和研究过程做了回顾和总结,以供类似新建工程项目借鉴与改进。  相似文献   
324.
目前,高速公路为军警车开辟的专用车道车流量明显不足,资源浪费严重。为提升高速公路收费站的整体通行能力,基于电子不停车收费的理念以及军警车道的特殊性,提出军警与ETC混合的车道系统设计方案,结合车牌识别与ETC技术,实现军警与ETC混合的车道应用。  相似文献   
325.
基于对左转专用车道停车线的研究,分析了停车线的位置与相位绿灯间隔时间和车道饱和流量这两个交叉口通行能力关键影响因素的关系在保障交又口车辆通行安全的前提下,以交叉口通行能力最大为目标,建立以左转车道停车线位置与直行车道停车线位置之间距离为基本参数的数学模型,并提出了相应的解法,最后,通过具体的交又口实例分析,求解出了左转停车线的最佳位置,证明该模型具有很好的实用性.  相似文献   
326.
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   
327.
As charging-while-driving (CWD) technology advances, charging lanes can be deployed in the near future to charge electric vehicles (EVs) while in motion. Since charging lanes will be costly to deploy, this paper investigates the deployment of two types of charging facilities, namely charging lanes and charging stations, along a long traffic corridor to explore the competitiveness of charging lanes. Given the charging infrastructure supply, i.e., the number of charging stations, the number of chargers installed at each station, the length of charging lanes, and the charging prices at charging stations and lanes, we analyze the charging-facility-choice equilibrium of EVs. We then discuss the optimal deployment of charging infrastructure considering either the public or private provision. In the former, a government agency builds and operates both charging lanes and stations to minimize social cost, while in the latter, charging lanes and stations are assumed to be built and operated by two competing private companies to maximize their own profits. Numerical experiments based on currently available empirical data suggest that charging lanes are competitive in both cases for attracting drivers and generating revenue.  相似文献   
328.
Autonomous vehicles have the potential to improve link and intersection traffic behavior. Computer reaction times may admit reduced following headways and increase capacity and backwards wave speed. The degree of these improvements will depend on the proportion of autonomous vehicles in the network. To model arbitrary shared road scenarios, we develop a multiclass cell transmission model that admits variations in capacity and backwards wave speed in response to class proportions within each cell. The multiclass cell transmission model is shown to be consistent with the hydrodynamic theory. This paper then develops a car following model incorporating driver reaction time to predict capacity and backwards wave speed for multiclass scenarios. For intersection modeling, we adapt the legacy early method for intelligent traffic management (Bento et al., 2013) to general simulation-based dynamic traffic assignment models. Empirical results on a city network show that intersection controls are a major bottleneck in the model, and that the legacy early method improves over traffic signals when the autonomous vehicle proportion is sufficiently high.  相似文献   
329.
This paper proposes a bi-level programming model to solve the design problem for bus lane distribution in multi-modal transport networks. The upper level model aims at minimizing the average travel time of travelers, as well as minimizing the difference of passengers’ comfort among all the bus lines by optimizing bus frequencies. The lower level model is a multi-modal transport network equilibrium model for the joint modal split/traffic assignment problem. The column generation algorithm, the branch-and-bound algorithm and the method of successive averages are comprehensively applied in this paper for the solution of the bi-level model. A simple numerical test and an empirical test based on Dalian economic zone are employed to validate the proposed model. The results show that the bi-level model performs well with regard to the objective of reducing travel time costs for all travelers and balancing transit service level among all bus lines.  相似文献   
330.
This study analyzes the potential benefits and drawbacks of taxi sharing using agent-based modeling. New York City (NYC) taxis are examined as a case study to evaluate the advantages and disadvantages of ride sharing using both traditional taxis (with shifts) and shared autonomous taxis. Compared to existing studies analyzing ride sharing using NYC taxi data, our contributions are that (1) we proposed a model that incorporates individual heterogeneous preferences; (2) we compared traditional taxis to autonomous taxis; and (3) we examined the spatial change of service coverage due to ride sharing. Our results show that switching from traditional taxis to shared autonomous taxis can potentially reduce the fleet size by 59% while maintaining the service level and without significant increase in wait time for the riders. The benefit of ride sharing is significant with increased occupancy rate (from 1.2 to 3), decreased total travel distance (up to 55%), and reduced carbon emissions (up to 866 metric tonnes per day). Dynamic ride sharing, wich allows shared trips to be formed among many groups of riders, up to the taxi capacity, increases system flexibility. Constraining the sharing to be only between two groups limits the sharing participation to be at the 50–75% level. However, the reduced fleet from ride sharing and autonomous driving may cause taxis to focus on areas of higher demands and lower the service levels in the suburban regions of the city.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号