首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6660篇
  免费   289篇
公路运输   1639篇
综合类   2197篇
水路运输   1443篇
铁路运输   1164篇
综合运输   506篇
  2024年   35篇
  2023年   69篇
  2022年   138篇
  2021年   202篇
  2020年   242篇
  2019年   161篇
  2018年   150篇
  2017年   264篇
  2016年   258篇
  2015年   354篇
  2014年   271篇
  2013年   279篇
  2012年   446篇
  2011年   506篇
  2010年   257篇
  2009年   303篇
  2008年   517篇
  2007年   533篇
  2006年   526篇
  2005年   362篇
  2004年   289篇
  2003年   163篇
  2002年   116篇
  2001年   91篇
  2000年   73篇
  1999年   67篇
  1998年   52篇
  1997年   62篇
  1996年   32篇
  1995年   31篇
  1994年   29篇
  1993年   21篇
  1992年   13篇
  1991年   8篇
  1990年   9篇
  1989年   10篇
  1988年   7篇
  1987年   3篇
排序方式: 共有6949条查询结果,搜索用时 218 毫秒
131.
The role of residential self-selection has become a major subject in the debate over the relationships between the built environment and travel behavior. Numerous previous empirical studies on this subject have provided valuable insights into the associations between the built environment and travel behavior. However, the vast majority of the studies were conducted in North American and European cities; yet this research is still in its infancy in most developing countries, including China, where residential and transport choices are likely to be more constrained and travel-related attitudes quite different from those in the developed world. Using the data collected from 2038 residents currently living in TOD neighborhoods and non-TOD neighborhoods in Shanghai City, this paper aims to partly fill the gaps by investigating the causal relationship between the built environment and travel behavior in the Chinese context. More specifically, this paper employs Heckman’s sample selection model to examine the reduction impacts of TOD on personal vehicle kilometers traveled (VKT), controlling for self-selection. The results show that whilst the effects of residential self-selection are apparent; the built environment exhibits the most significant impacts on travel behavior, playing the dominant role. These findings produce a sound basis for local policymakers to better understand the nature and magnitude toward the impacts of the built environment on travel behavior. Providing the government department with reassurance that effective interventions and policies on land use aimed toward altering the built environment would actually lead to meaningful changes in travel behavior.  相似文献   
132.
  鑫 《水运工程》2018,(9):168-172
针对已有航标监管手段实时性差、效率低、局限性等问题,进行了航标监管有效控制的探索,采用无人机遥感技术、建立航标设备运行信息数据库并搭建可视化三维地理信息管理平台,最终形成了一套完整的无人机航标监视监测系统。经测试应用效果良好,对提高航标监管有重要意义。  相似文献   
133.
The limited understanding of vehicular emissions in China, especially evaporative emissions, is one obstacle to establishing tighter standards. To evaluate tailpipe and evaporative emissions, two typical China IV vehicles and one Tier 2 vehicle with an onboard refuelling vapour recovery (ORVR) system were selected and tested. One of the China IV vehicles was fuelled with gasoline, E10 and M15, respectively, to investigate the effect of fuel properties on vehicular emissions. For each vehicle, cold-start tailpipe emission tests were conducted first, followed by an evaporation test. Based on the emission factors and real-world vehicle activity data, the annual tailpipe and evaporative hydrocarbon (HC) emissions of each vehicle were calculated and compared. The results show that E10 and M15 significantly reduced the tailpipe CO and particle number (PN) emissions but seriously aggravated the NOx emissions, especially for M15. The hot soak losses (HSLs) and diurnal breathing losses (DBLs) were slightly impacted by the fuel properties. The annual evaporative emissions with E10 and M15 were higher than that with gasoline. The ORVR system effectively controlled the evaporative emissions, especially for DBLs. Evaporative emissions from the China IV vehicles were 1.1–1.4 times the tailpipe HC emissions. Additionally, the evaporative emission factors of the China IV vehicles were almost 50% lower than the standard (2.0 g/test), whereas their annual evaporative emissions were almost 1.8–2.8 times higher than those from the Tier 2 vehicle. Therefore, controlling evaporative emissions currently remains a great need in China, and the ORVR might be a recommended evaporative control technology.  相似文献   
134.
Cellular Automaton (CA), an efficient dynamic modeling method that is widely used in traffic engineering, is newly introduced for traffic load modeling. This modeling method significantly addresses the modest traffic loads for long-span bridges. It does, however, require improvement to calculate precise load effects. This paper proposed an improved cellular automaton with axis information, defined as the Multi-axle Single-cell Cellular Automaton (MSCA), for the precise micro-simulation of random traffic loads on bridges. Four main ingredients of lattice, cells’ states, neighborhoods and transition rules are redefined in MSCA to generate microscopic vehicle sequences with detailed vehicle axle positions, user-defined cell sizes and time steps. The simulation methodology of MSCA is then proposed. Finally, MSCA is carefully calibrated and validated using site-specific WIM data. The results indicate: (1) the relative errors (REs) for the traffic parameters, such as volumes, speeds, weights, and headways, from MSCA are basically no more than ±10% of those of WIM data; (2) the load effects of three typical influence lines (ILs) with varied lengths of 50, 200 and 1000 m are also confidently comparable, both of which validate the rationality and precision of MSCA. Furthermore, the accurate vehicle parameters and gaps generated from MSCA can be applied not only for precise traffic loading on infrastructures but also for the accurate estimation of vehicle dynamics and safety. Hence, wide application of MSCA can potentially be expected.  相似文献   
135.
In this paper, the location of emergency service (ES) vehicles is studied on fully connected networks. Queuing theory is utilized to obtain the performance metrics of the system. An approximate queuing model the (AQM) is proposed. For the AQM, different service rate formulations are constructed. These formulations are tested with a simulation study for different approximation levels. A mathematical model is proposed to minimize the mean response time of ES systems based on AQM. In the model, multiple vehicles are allowed at a single location. The objective function of the model has no closed form expression. A genetic algorithm is constructed to solve the model. With the help of the genetic algorithm, the effect of assigning multiple vehicles on the mean response time is reported.  相似文献   
136.
With trajectory data, a complete microscopic and macroscopic picture of traffic flow operations can be obtained. However, trajectory data are difficult to observe over large spatiotemporal regions—particularly in urban contexts—due to practical, technical and financial constraints. The next best thing is to estimate plausible trajectories from whatever data are available. This paper presents a generic data assimilation framework to reconstruct such plausible trajectories on signalized urban arterials using microscopic traffic flow models and data from loops (individual vehicle passages and thus vehicle counts); traffic control data; and (sparse) travel time measurements from whatever source available. The key problem we address is that loops suffer from miss- and over-counts, which result in unbounded errors in vehicle accumulations, rendering trajectory reconstruction highly problematic. Our framework solves this problem in two ways. First, we correct the systematic error in vehicle accumulation by fusing the counts with sparsely available travel times. Second, the proposed framework uses particle filtering and an innovative hierarchical resampling scheme, which effectively integrates over the remaining error distribution, resulting in plausible trajectories. The proposed data assimilation framework is tested and validated using simulated data. Experiments and an extensive sensitivity analysis show that the proposed method is robust to errors both in the model and in the measurements, and provides good estimations for vehicle accumulation and vehicle trajectories with moderate sensor quality. The framework does not impose restrictions on the type of microscopic models used and can be naturally extended to include and estimate additional trajectory attributes such as destination and path, given data are available for assimilation.  相似文献   
137.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   
138.
The growth of vehicle sales and use internationally requires the consumption of significant quantities of energy and materials, and contributes to the deterioration of air-quality and climate conditions. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. They require life cycle assessments and detailed comparisons with gasoline powered vehicles which, in turn, should lead to critical updates of traditional models and assumptions. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. Substantially, more sustainable urban transportation can be achieved in the short-term by promoting policies that increase vehicle occupancy; in the intermediate-term by increasing the share of hybrid vehicles in the car market and in the long-term by the widespread use of electric vehicles. A sensitivity-analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and tend to favor the variable cost of hybrid vehicles.  相似文献   
139.
During the last years, many governments have set targets for increasing the share of biofuels in the transportation sector. Understanding consumer behavior is essential in designing policies that efficiently increase the uptake of cleaner technologies. In this paper we analyze adopters and non-adopters of alternative fuel vehicles (AFVs). We use diffusion of innovation theory and the established notion that the social system and interpersonal influence play important roles in adoption. Based on a nationwide database of car owners we analyze interpersonal influence on adoption from three social domains: neighbors, family and coworkers. The results point primarily at a neighbor effect in that AFV adoption is more likely if neighbors also have adopted. The results also point at significant effects of interpersonal influence from coworkers and family members but these effects weaken or disappear when income, education level, marriage, age, gender and green party votes are controlled for. The results extend the diffusion of innovation and AFV literature with empirical support for interpersonal influence based on objective data where response bias is not a factor. Implications for further research, environmental and transport policy, and practitioners are discussed.  相似文献   
140.
With 36 ventures testing autonomous vehicles (AVs) in the State of California, commercial deployment of this disruptive technology is almost around the corner (California Department of Transportation, 2016). Different business models of AVs, including Shared AVs (SAVs) and Private AVs (PAVs), will lead to significantly different changes in regional vehicle inventory and Vehicle Miles Travelled (VMT). Most prior studies have already explored the impact of SAVs on vehicle ownership and VMT generation. Limited understanding has been gained regarding vehicle ownership reduction and unoccupied VMT generation potentials in the era of PAVs. Motivated by such research gap, this study develops models to examine how much vehicle ownership reduction can be achieved once private conventional vehicles are replaced by AVs and the spatial distribution of unoccupied VMT accompanied with the vehicle reduction. The models are implemented using travel survey and synthesized trip profile from Atlanta Metropolitan Area. The results show that more than 18% of the households can reduce vehicles, while maintaining the current travel patterns. This can be translated into a 9.5% reduction in private vehicles in the study region. Meanwhile, 29.8 unoccupied VMT will be induced per day per reduced vehicles. A majority of the unoccupied VMT will be loaded on interstate highways and expressways and the largest percentage inflation in VMT will occur on minor local roads. The results can provide implications for evolving trends in household vehicles uses and the location of dedicated AV lanes in the PAV dominated future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号