全文获取类型
收费全文 | 15010篇 |
免费 | 714篇 |
专业分类
公路运输 | 5121篇 |
综合类 | 3775篇 |
水路运输 | 3015篇 |
铁路运输 | 3097篇 |
综合运输 | 716篇 |
出版年
2024年 | 60篇 |
2023年 | 116篇 |
2022年 | 289篇 |
2021年 | 472篇 |
2020年 | 467篇 |
2019年 | 274篇 |
2018年 | 282篇 |
2017年 | 346篇 |
2016年 | 340篇 |
2015年 | 481篇 |
2014年 | 1024篇 |
2013年 | 715篇 |
2012年 | 1416篇 |
2011年 | 1243篇 |
2010年 | 967篇 |
2009年 | 962篇 |
2008年 | 944篇 |
2007年 | 1277篇 |
2006年 | 1162篇 |
2005年 | 800篇 |
2004年 | 527篇 |
2003年 | 359篇 |
2002年 | 255篇 |
2001年 | 229篇 |
2000年 | 147篇 |
1999年 | 106篇 |
1998年 | 91篇 |
1997年 | 80篇 |
1996年 | 49篇 |
1995年 | 40篇 |
1994年 | 43篇 |
1993年 | 47篇 |
1992年 | 22篇 |
1991年 | 27篇 |
1990年 | 22篇 |
1989年 | 25篇 |
1988年 | 14篇 |
1985年 | 1篇 |
1984年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):451-470
This paper presents the results of a comprehensive study on heavy-duty vehicle (HDV) roll stability improvement technology. The proposed rollover threat warning system uses the real-time dynamic model-based time-to-rollover (TTR) metric as a basis for online rollover detections. Its feasibility for implementation in a HDV rollover threat detection system is demonstrated through vehicle dynamic simulation studies. The research on the development of a rollover threat detection system is further enhanced in combination with an active roll control system using active suspension mechanism to improve heavy-duty trucks’ roll stability both in the static cornering and in emergency maneuvers. It has been demonstrated that the roll stability of typical heavy-duty trucks has been largely improved by the proposed active safety monitoring and control system. 相似文献
82.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1245-1265
A traction control system (TCS) for two-wheel-drive vehicles can conveniently be realised by means of slip control. Such a TCS is modified in this paper in order to be applicable to four-wheel-drive vehicles and anti-lock braking systems, where slip information is not readily available. A reference vehicle model is used to estimate the vehicle velocity. The reference model is excited by a saw-tooth signal in order to adapt the slip for maximum tyre traction performance. The model-based TCS is made robust to vehicle modelling errors by extending it with (i) a superimposed loop of tyre static curve gradient control or (ii) a robust switching controller based on a bi-directional saw-tooth excitation signal. The proposed traction control strategies are verified by experiments and computer simulations. 相似文献
83.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(2):243-264
The IMMa optimisation algorithm (IOA) consists of a heuristic method based on a differential evolution algorithm for choosing the Magic Formula (MF) tyre model parameters. In a previous paper, we demonstrated that the IOA improved the searching procedure of optimum MF parameters with respect to the starting value optimisation (SVO) methods. But we had to introduce some control input parameters that were fixed during the running process. Now, the new version does not require control input variables to be chosen by the user. That is, we use an algorithm with self-adapting control parameters and it continues being easy to use, robust and fast. Hence, users do not need any kind of knowledge to use the IOA. 相似文献
84.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):501-526
Previous work in the railway technology laboratory at Virginia Polytechnic Institute and State University (Virginia Tech) focused on better capturing the dynamics of the friction wedge, modelled using three-dimensional rigid body dynamics with unilateral contact conditions. The current study extends the previous work to a half-bogie model treated as an application of multibody dynamics with unilateral contact to model the friction wedge interactions with the bolster and the sideframe. The half-bogie model was derived using MATLAB and functions as a three dimensional, dynamic, and multibody dynamics model comprised of four rigid bodies: a bolster, two friction wedges, and a sideframe assembly. This expanded model allows each wedge four degrees of freedom: vertical displacement, longitudinal displacement (between the bolster and sideframe), pitch (rotation around the lateral axis), and yaw (rotation around the vertical axis). The bolster and the sideframe are constrained to have only the vertical degree of freedom. The geometry of these bodies can be adjusted for various simulation scenarios. The bolster can be initialised with a pre-defined yaw (rotation around the vertical axis) and the sideframe may be initialised with a pre-defined pitch/toe (rotation around the lateral axis). The results of the multibody dynamics in half-bogie model simulation are shown in comparison with results from NUCARS®, an industry standard in train-modelling software, for similar inputs. 相似文献
85.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):527-559
The paper addresses the need for improved mathematical models of human steering control. A multiple-model structure for a driver's internal model of a nonlinear vehicle is proposed. The multiple-model structure potentially offers a straightforward way to represent a range of driver expertise. The internal model is combined with a model predictive steering controller. The controller generates a steering command through the minimisation of a cost function involving vehicle path error. A study of the controller performance during an aggressive, nonlinear steering manoeuvre is provided. Analysis of the controller performance reveals a reduction in the closed-loop controller bandwidth with increasing tyre saturation and fixed controller gains. A parameter study demonstrates that increasing the multiple-model density, increasing the weights on the path error, and increasing the controller knowledge range all improved the path following accuracy of the controller. 相似文献
86.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1477-1496
This work presents a virtual rider for the guidance of a nonlinear motorcycle model. The target motion is defined in terms of roll angle and speed. The virtual rider inputs are the steering torque, the rear-wheel driving/braking torque and front-wheel braking torque. The virtual rider capability is assessed by guiding the nonlinear motorcycle model in demanding manoeuvres with roll angles of 50° and longitudinal accelerations up to 0.8 g. Considerations on the effective preview distance used by the virtual rider are included. 相似文献
87.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):685-701
A clutch disengagement strategy is proposed for the shift control of automated manual transmissions. The control strategy is based on a drive shaft torque observer. With the estimated drive shaft torque, the clutch can be disengaged as fast as possible without large driveline oscillations, which contributes to the reduction of total shift time and shift shock. The proposed control strategy is tested on a complete powertrain simulation model. It is verified that the system is robust to the variations of driving conditions, such as vehicle mass and road grade. It is also demonstrated that the revised system with switched gain can provide satisfactory performance even under large estimation error of the engine torque. 相似文献
88.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1521-1532
The steady-state handling properties of a rigid vehicle with a tandem rear axle configuration are developed. This work uses conventions resulting in a parsimonious characterisation of steady-state handling of such three-axle vehicles that is shown to be a simple extension of the well-known two-axle bicycle model. Specifically the concepts of understeer and wheelbase are developed for a three-axle vehicle, and shown to play the same role in characterising vehicle handling as they do in the well-known two-axle vehicle model. An equivalent wheelbase of a three-axle vehicle is expressed in terms of vehicle geometry and cornering stiffness of each axle. The model developed in this work is reconciled with previous models that make use of simplifying assumptions found in the literature. 相似文献
89.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):705-735
The fault-tolerant control (FTC) of heavy-haul trains is discussed on the basis of the speed regulation proposed in previous works. The fault modes of trains are assumed and the corresponding fault detection and isolation (FDI) are studied. The FDI of sensor faults is based on a geometric approach for residual generators. The FDI of a braking system is based on the observation of the steady-state speed. From the difference of the steady-state speeds between the fault system and the faultless system, one can get fault information. Simulation tests were conducted on the suitability of the FDIs and the redesigned speed regulators. It is shown that the proposed FTC does not explicitly worsen the performance of the speed regulator in the case of a faultless system, while it obviously improves the performance of the speed regulator in the case of a faulty system. 相似文献
90.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):619-639
A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models. 相似文献