全文获取类型
收费全文 | 907篇 |
免费 | 90篇 |
专业分类
公路运输 | 253篇 |
综合类 | 182篇 |
水路运输 | 322篇 |
铁路运输 | 206篇 |
综合运输 | 34篇 |
出版年
2025年 | 6篇 |
2024年 | 37篇 |
2023年 | 36篇 |
2022年 | 36篇 |
2021年 | 51篇 |
2020年 | 37篇 |
2019年 | 39篇 |
2018年 | 34篇 |
2017年 | 38篇 |
2016年 | 40篇 |
2015年 | 48篇 |
2014年 | 50篇 |
2013年 | 56篇 |
2012年 | 101篇 |
2011年 | 71篇 |
2010年 | 36篇 |
2009年 | 43篇 |
2008年 | 38篇 |
2007年 | 46篇 |
2006年 | 41篇 |
2005年 | 24篇 |
2004年 | 25篇 |
2003年 | 12篇 |
2002年 | 7篇 |
2001年 | 11篇 |
2000年 | 7篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 6篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
排序方式: 共有997条查询结果,搜索用时 0 毫秒
311.
考虑筋/板相互作用的环肋圆柱壳屈曲强度分析 总被引:9,自引:0,他引:9
环肋圆柱壳是潜艇耐压壳体的一种主要结构形式.环肋圆柱壳的失稳破坏主要表现在肋骨间的壳板失稳和总体失稳.在计算肋骨间的壳板失稳时,传统方法认为肋骨为壳板提供简支边界,忽略了在边界上肋骨和壳板的相互影响.在实际结构中,由于肋骨提供扭转刚度,壳板在与肋骨相交的边界上将存在弯矩,并非自由支持边界.因而,壳板失稳时,筋/板产生相互影响,提高了壳板的屈曲强度.本文的主要目的是,推导考虑筋/板相互影响的环肋圆柱壳壳板屈曲强度的理论计算方法,分析筋/板的相互关系.通过本文的算例表明,本文推导的计算方法以及所编制的计算程序是可靠的,可以用于工程设计. 相似文献
312.
山区河流岸坡稳定性研究,涉及岩质边坡稳定性分析、岸坡渗流场计算和水固相互作用等,是典型的流固耦合问题。由于问题的复杂性,采用传统的极限平衡分析法、有限元计算方法很难解决,而采用现场试验的方法往往又会受到经费的限制。因此,采用能客观地反映工程实际和降低试验成本的离心模型试验方法进行模拟,是一种切实可行的研究方法。本研究结合山区河流岸坡稳定性的特点,对试验模型的制作、试验工况的模拟、试验误差的分析和边界条件等因素进行比较分析,提出较为合理的试验方案;并对模型试验的有关问题进行数值计算,为后续的模型试验提供了数据对比材料。 相似文献
313.
The environmental effects of ground-borne vibrations generated due to localised railway defects is a growing concern in urban areas. Frequency domain modelling approaches are well suited for predicting vibration levels on standard railway lines due to track periodicity. However, when considering individual, non-periodic, localised defects (e.g. a rail joint), frequency domain modelling becomes challenging. Therefore in this study, a previously validated, time domain, three-dimensional ground vibration prediction model is modified to analyse such defects. A range of different local (discontinuous) rail and wheel irregularity are mathematically modelled, including: rail joints, switches, crossings and wheel flats. Each is investigated using a sensitivity analysis, where defect size and vehicle speed is varied. To quantify the effect on railroad ground-borne vibration levels, a variety of exposure–response relationships are analysed, including: peak particle velocity, maximum weighted time-averaged velocity and weighted decibel velocity. It is shown that local irregularities cause a significant increase in vibration in comparison to a smooth track, and that the vibrations can propagate to greater distances from the line. Furthermore, the results show that step-down joints generate the highest levels of vibration, whereas wheel flats generate much lower levels. It is also found that defect size influences vibration levels, and larger defects cause greater vibration. Lastly, it is shown that for different defect types, train speed effects are complex, and may cause either an increase or decrease in vibration levels. 相似文献
314.
The climate change has made the transit through Arctic area more feasible, which demands reliable methods to evaluate ship performance. Ship performance in ice is a cross-scale problem, where the desired output such as ship speed lies in larger scale while the actual ship-ice interaction happens in smaller scale. Due to insufficient knowledge in ice mechanics and the demand for computational efficiency, existing approaches for modelling ship-ice interaction from ship performance perspective are mostly either (semi-) empirical, or simplified analytical, with reduced dimensions and extensively simplified mechanics. This paper presents a novel approach to model ship-ice interaction, which maintains the accuracy of the modelling with Finite Element Method (FEM) in ship-ice interaction scale, while being computationally very cheap, therefore is capable to be applied in ship scale simulations. The ice failure is firstly qualitatively investigated through full-scale and model-scale observations, as well as a numerical simulation with Extended Finite Element Method (XFEM). The model is then simplified and executed by Abaqus to automatically run a large database. A neural network is used to fit the results to get a simulation-free tool for ship-ice interaction calculation. Finally, the uncertainty in the results due to an important assumption is quantified. The results show that the obtained neural network fits the database with excellent performance. Therefore, it can be applied in ship scale simulations with improved accuracy compared to empirical or analytical approaches. 相似文献
315.
The work presented in this paper is focused on the development of a simplified method to study the structural response of a deeply immersed cylinder subjected to the primary shock wave generated by an underwater explosion. The proposed analytical model is based on the string-on-foundation method initially developed by Hoo Fatt and Wierzbicki, who converted the two dimensional boundary value problem of a cylindrical shell to an equivalent one-dimensional problem of a plastic string on a plastic foundation. This method has already been extended by the authors to study the shock wave response of an unstiffened cylinder immersed in shallow water. The present work focuses on deep-immersed cylinders subjected to both high hydrostatic pressure and explosion shock wave. The elastic deformation energy of the cylinder under hydrostatic pressure is first calculated and used to determine the initial conditions of the dynamic problem. Cylinder deflection and plastic deformation energy are then calculated for various immersion depths. When confronted to numerical results, the proposed model appears to underestimate the increase of deflection and absorbed energy with the immersion depth. A thorough analysis of the results post-processed from Ls-Dyna/USA finite element simulations highlights a new mechanism which is due to the action of hydrostatic pressure that continues to push inward the immersed cylinder. In order to improve the analytical model, a correction factor on the hydrostatic pressure is introduced but it is finally concluded that a new mechanism dedicated to the late action of the hydrostatic pressure still needs to be developed. 相似文献
316.
This paper presents a benchmark study on the slamming responses of offshore structures’ flat-stiffened plates. The objective was to compare the fluid-structure interaction (FSI) simulation methodologies, modeling techniques, and established researchers' experiences in predicting slamming pressure. Three research groups employing the most common commercial software packages for numerical FSI simulations (i.e. LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX, and Star-CCM+/ABAQUS) participated in this study. Wet drop test data on flat-stiffened aluminum plates of light-ship-like bottom structures available in the open literature was utilized for validation of the FSI modeling. A summary of the experimental conditions including the geometry model and material properties, was distributed to the participants prior to their simulations. A parametric study on flat-stiffened steel plates having actual scantlings used in marine installations was performed to investigate the effect of impact velocity and plate rigidity on slamming response. The FE simulation results for the total vertical forces acting on the stiffened plates and their structural responses to those forces, as obtained from the participants, were analyzed and compared. The reliable and accurate predictions of slamming loads using the aforementioned commercial FSI software packages were evaluated. Additionally, equivalent static slamming pressures resulting in the same permanent deflections, as observed from the FSI simulations, were reported and compared with analytical models proposed by the Classification Standards DNV and existing experimental data for calculation of the slamming pressure. The study results showed that the equivalent load model depends on the water impact velocity and plate rigidity; that is, the equivalent static pressure coefficient decreases with an increase in impact velocity, and increases when impacting structures become stiffer. 相似文献
317.
The paper addresses different uncertainty analysis methods commonly used for uncertainty quantification in Computational Fluid Dynamics (CFD) studies and compares a constant Courant–Friedrichs–Lewy (CFL) number based approach for uncertainty estimation to the ITTC recommended grid and time-independent procedures. Four different uncertainty estimation procedures are presented and discussed. To compare their performance and better understand CFD related uncertainty quantification in wave load simulations on offshore structures, the methods are applied to a case study of the wave loads on a fixed vertical cylinder. The numerical or CFD wave tank is generated using the open-source CFD toolkit OpenFOAM. Uncertainty is assessed for the case study using four different uncertainty estimation procedures for verification and later, validation is attempted by comparing the CFD results with experiments. The study concludes that a constant CFL number based uncertainty study provides more stable results and is better suited for uncertainty estimation in CFD than the ITTC recommended individual grid and time step uncertainty study. 相似文献
318.
The problem of interaction between a floating ice cover and an engineering structure is considered, in which the ice–structure contact forces are caused by an increase in ice temperature due to solar radiation in situations, when the lateral thermal expansion of ice is constrained. The focus is on the determination of the maximum thermally-induced horizontal force exerted on a structure wall, assuming that the magnitude of this force is bound by the smallest force capable of fracturing the ice cover due to its buckling. The ice cover is modelled as a rectangular plate of uniform thickness, with its four edges being constrained by vertical rigid walls, and it is assumed that ice deforms, and eventually fails, by the mechanism of viscous creep buckling. The plate is subjected to in-plane axial compressive stresses developing in ice to prevent its thermal expansion due to solar heating, and is transversely (vertically) bent by the forces caused by the reaction of underlying water. The floating ice is treated as a material whose elastic and viscous properties depend on temperature and the ice porosity, and therefore they vary with time and the depth of ice. The results of numerical simulations, conducted for a variety of the ice plate horizontal dimensions, thicknesses and daytime temperature-change scenarios, illustrate the evolution of the plate deflection surface prior to its failure, and show the time variation of the maximum forces exerted by ice on a structure wall as functions of the ice thickness and maximum daytime temperature rise at the top surface of ice. 相似文献
319.
In this study, a new one-way integrated numerical model for fluid–seabed–structure interaction is established by integrating the finite element software, ABAQUS, and the open-source fluid dynamics package, OlaFlow. In this new model, the generation and propagation of ocean waves as well as the seepage flow in a porous medium are controlled by OlaFlow; concurrently, the wave-induced dynamic responses of a porous seabed and marine structures are governed by ABAQUS. The reliability of this new model is validated by an analytical solution and a series of wave flume tests. The comparison results show that the new established model has high reliability and feasibility. Finally, this new integrated model is utilized for investigating the wave-induced dynamics of a composite breakwater and its seabed foundation as well as to evaluate the residual horizontal sliding displacement of the caisson of this composite breakwater under wave impact. Because this new integrated numerical model can fully utilize the advantages of both ABAQUS and OlaFlow, it is expected to have broad prospects for application in engineering practice. 相似文献
320.
Subsea pipelines buried in the seabed may undergo large lateral displacement under environmental, operational, and accidental loads at different interaction rates and hence different drainage conditions. The undrained shear strength is commonly used in practice to assess the pipe-soil interaction assuming a sufficiently high displacement rate. This approach neglects consolidation effects and the rate-dependent response of the soil and may significantly underestimates the lateral resistance for a pipeline moving slowly relative to the ground. In this study, a coupled large deformation finite element (LDFE) framework is developed via a remeshing and interpolation technique with small strain (RITSS). A Modified Cam-Clay (MCC) model with efficient numerical integration is used. The proposed coupled LDFE framework is verified against selected physical model tests. Effects of the interaction rate and hence drainage condition on the p-y curve, excess pore pressure generation and dissipation, and failure mechanisms are discussed. An empirical relationship between the ultimate resistance and the normalized velocity of the pipe (denoting the drainage condition) is proposed, which may be applied for the integrity and safety analysis of buried pipes in landslide or fault-crossing regions. 相似文献