首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   2篇
公路运输   17篇
综合类   6篇
水路运输   123篇
铁路运输   7篇
综合运输   4篇
  2024年   4篇
  2023年   9篇
  2022年   2篇
  2021年   12篇
  2020年   10篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   11篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   9篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
141.
中国车市2011年1—5月出现大幅度回落,有专家误判"车市进入本次波动收缩期",因此对完成"十二五"汽车规划信心动荡。文章为解决上述"认识误区",采用"车市波动分析法"这一创新成果,分析研究了有关数据和波动图波形走势,判定当前车市处于两峰之间的"波谷",处于本次波动"扩张后期",还没有进入"收缩期"。2011年车市处于中下等市场,2011年下半年将有所回升,年增长率接近10%(与GDP基本同步或稍高)。对"十二五"期间车市发展持审慎乐观态度。  相似文献   
142.
    
Submerged floating tunnel (SFT) is an innovative cable-supported structural system for crossing deep and long-distance ocean environments. In the complex ocean environment, the construction of SFT needs to consider wave and current forces. Specific construction measures and control also require in-depth study and understanding of the dynamic response of SFT under such environmental loads. In this study, the dynamic response of SFT and cable forces under the action of waves alone and wave-current interactions are investigated by using a large wave-current basin. A total of 138 regular wave and wave-current cases were conducted during the experiments, and the influence of waves and wave-current interactions on the dynamic response of SFT and cable forces are discussed in detail by combining experimental data with corresponding analysis. Results show that the wave height, current velocity, and ratio of wavelength to structure size are important factors affecting the dynamic response of SFT and cable forces. The multi-anchor cable arrangement used in the present experimental tests distribute cable force more effectively and reduce the potential safety hazard caused by cable breakage. This study can provide a useful reference for the construction and control of the single SFT segment under construction in a complex ocean environment, especially under the interaction of waves and currents.  相似文献   
143.
    
This paper concerns the largest and arguably the most threatening wave loading component experienced by a broad range of offshore structures. It arises when an incident wave crest exceeds the elevation of the underside of the deck structure, leading to direct wave-in-deck (WID) loading. The extent of this loading may be limited to the partial submergence of some of the lowermost deck beams, or could involve the large-scale inundation of the entire deck area. Either way, very large loads can arise which must be taken into account when assessing the reliability of the structure. In an earlier contribution Ma and Swan (2020) provided an extensive laboratory study exploring the variation of these loads with the properties of the incident wave. The present paper describes a second stage of this experimental study in which the variation of the WID loads with the properties of the topside structure is addressed. Specifically, it considers the porosity, position and orientation of the topside relative to the incident wave conditions, and seeks to explore both the variations in the maximum load and the loading time–history resulting from these changes.Given the highly transitory nature of a WID loading event, coupled with the fact that the problem is governed by flow conditions at, or very close to, the instantaneous water surface, the loading process is driven by an exchange of momentum from the wave crest to the topside structure. A recently developed WID load model, based on exactly these arguments (Ma and Swan 2020), is used alongside the laboratory data to provide a break-down of the load into its component parts. This provides an enhanced physical understanding of the resulting load time–history. The first part of the study is based upon an idealised generic topside structure, allowing a systematic variation in key parameters, particularly porosity. The second part addresses a realistic topside structure demonstrating the practical relevance of earlier work. Taken together, the analysis clearly establishes the importance of the topside porosity, clarifies the spatial effects associated with the evolution of a large ocean wave beneath the plan area of a structure and explains the unexpected occurrence of impact-type loading on topside structures having a high porosity. Most importantly, the paper highlights those properties of a topside structure which must be incorporated if the WID loads are to be accurately predicted.  相似文献   
144.
    
This paper reviews the importance of uncertainties in hull girder loads influenced by flexible fluid structure interactions. The focus is on developments in the field of hydroelastic modelling, simulation and model tests of practical relevance to the prediction hull girder wave load predictions and their validation. It is concluded that whereas hydroelastic methods for use in design development and assessment become increasingly useful, challenges in realizing and modelling uncertainties can be attributed to: (1) the limitations of numerical methods to suitably model nonlinearities; (2) the ambiguity of model tests; and (3) the systematic use of data emerging from computational, model- or full-scale methods. An approach is recommended to assess the uncertainty in the hydroelastic responses to wave loading and an example is provided to demonstrate the application of the procedure.  相似文献   
145.
In the assessment of wave-in-deck loads for new and existing maritime structures typically model tests are carried out. To determine the most critical conditions and measure sufficient impact loads, a range of sea states and various seeds (realisations) for each sea state are tested. Based on these measurements, probability distributions can be derived and design loads determined. In air gap model testing usually only few, if any, impact loads occur per 3-hour seed. This can make it challenging to derive reliable probability distributions of the measured loads, especially when only a few seeds are generated. In addition wave impact forces, such as greenwater loading, slamming, or air gap impacts are typically strongly non-linear, resulting in a large variability of the measured loads. This results in the following questions: How many impacts are needed to derive a reliable distribution? How is the repeatability of individual events affecting the overall distribution? To answer these questions wave-in-deck model tests were carried out in 100 x 3-hour realisations of a 10,000 year North Sea sea state. The resulting probability distributions of the undisturbed wave measurements as well as the measured wave-in-deck loads are presented in this paper with focus on deriving the number of seeds and exposure durations required for a reliable estimate of design loads.The presented study is Part 2 of a combined study on guidance for the convergence and variability of wave crests and impact loading extreme values. The data set of Part 1 ([1]) is based on greenwater loads on a sailing ferry and the data set of Part 2 on wave-in-deck loads on a stationary deck box.  相似文献   
146.
    
  相似文献   
147.
For the design of maritime structures in waves, the extreme values of responses such as motions and wave impact loads are required. Waves and wave-induced responses are stochastic, so such responses should always be related to a probability. This information is not easy to obtain for strongly non-linear responses such as wave impact forces. Usually class rules or direct assessment via experiments or numerical simulations are applied to obtain extreme values for design. This brings up questions related to the convergence of extreme values: how long do we need to test in order to obtain converged statistics for the target duration? Or, vice versa: given testing data, what is the uncertainty of the associated statistics? Often the test or simulation duration is cut up in ‘seeds’ or ‘realisations’, with an exposure duration of one or three hours based on the typical duration of a steady environmental condition at sea, or the time that a ship sails a single course. The required number of seeds for converged results depends on the type of structure and response, the exposure duration, and the desired probability level. The present study provides guidelines for the convergence of most probable maximum (MPM) wave crest heights and MPM green water wave impact forces on a ferry. Long duration experiments were done to gain insight into the required number of seeds, and the effect of fitting. The present paper presents part 1 of this study; part 2 [1] presents similar results for wave-in-deck loads on a stationary deck box.  相似文献   
148.
    
Semi-submersible platform has been widely used in offshore oil exploitation due to its excellent performance, but can be attacked by wave impact loads in extreme ocean environments. Determining wave impact loads accurately is of great significance to the design and operation of offshore structures. An experimental study was carried out to investigate the critical governing parameters for the horizontal wave impact loads on a semi-submersible. The wavelet denoising technique and the frequency response function method are employed successfully to remove the effect of noise and dynamic contamination from the experimental data. The strongly nonlinear characteristics of the wave impact load are demonstrated. The results show that wave impact events are governed by the upwell height and upwell velocity. Most major wave impact events occur where both the two parameters are large, and the upwell velocity is more dominant in the wave impact process. In general, larger parameters tend to result in larger peak pressures and higher probabilities of wave impacts. The motion behaviors of the platform are benefit to reduce the occurrence probabilities of wave impact events and maximum impact pressures, owing to the escape velocities following the wave direction and the rotations leading to the above-water structure away from the waves. The insights given in this study provide a motivation and foundation for developing a sophisticated prediction model of the wave impact load on floating platforms.  相似文献   
149.
    
  相似文献   
150.
    
A methodology for estimating extreme response statistics for marine structures, that takes both the long-term variability of the metocean environment and the short-term variability of response into account is presented. The proposed methodology uses Gaussian process regression to estimate parameters of the short-term response distribution, based on output from computationally expensive hydrodynamic simulations. We present an adaptive design strategy for sequential updating of the model, focusing on the metocean conditions that contribute the most to the long-term extreme. With this approach, only a limited number of hydrodynamic simulations are needed.The suggested approach is demonstrated on the problem of estimating the 25-year extreme vertical bending moment on a ship. We show that a relatively small number of iterations (full hydrodynamic simulations) are needed to converge toward the “exact” results obtained by running a large number of simulations covering the entire range of sea states.The results suggest that the proposed method can be used as an alternative to contour-based methods or other methods that consider a few sea states using accurate numerical simulations, with little or no added complexity or computational effort.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号