首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   129篇
公路运输   483篇
综合类   72篇
水路运输   4篇
铁路运输   2篇
综合运输   7篇
  2024年   3篇
  2023年   9篇
  2022年   66篇
  2021年   64篇
  2020年   32篇
  2019年   44篇
  2018年   23篇
  2017年   1篇
  2016年   1篇
  2015年   8篇
  2014年   30篇
  2013年   15篇
  2012年   42篇
  2011年   38篇
  2010年   19篇
  2009年   27篇
  2008年   39篇
  2007年   37篇
  2006年   38篇
  2005年   10篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1998年   2篇
  1994年   1篇
  1990年   1篇
排序方式: 共有568条查询结果,搜索用时 15 毫秒
561.
针对车辆减少能量消耗与提高抗侧倾能力需求,提出了一种主/被动可切换的液压互联悬架抗侧倾控制方法。基于9自由度车辆动力学模型,考虑蓄能器、液压缸、液压泵三者之间耦合的体积-流量-压力特性,建立液压互联悬架主动控制时域模型;结合"车身侧倾角-车身侧倾角速度"相平面法及车辆侧向加速度,得到车辆侧倾稳定域,并提出液压互联悬架系统侧倾稳定性控制介入与退出判据;在此基础上,采用Backstepping非线性控制算法设计主动液压互联抗侧倾控制器。最后,分析并改进侧倾稳定性评价指标,通过在MATLAB/Simulink环境下进行高速双移线、鱼钩试验等极端工况数值仿真,验证所提出的液压互联悬架主/被动切换控制系统能在减少能量消耗的情况下能否提高车辆抗侧翻的能力。研究结果表明:所提出的控制系统能有效提高车辆抗侧翻能力;当车辆侧倾状态超出设定的侧倾稳定区域介入线时,液压互联悬架系统由被动模式切换为主动抗侧倾模式,控制车辆侧倾状态回到稳定区域,以提高车辆侧倾稳定性;当判定车辆侧倾状态满足主动控制退出条件时,液压互联悬架系统回到被动模式,以减小能量消耗。  相似文献   
562.
为方便液罐半挂汽车列车(Tractor Semi-trailer Tank Vehicle,TSTTV)罐-车整体的优化设计匹配,综合提高整车的侧倾稳定性、侧向动力学稳定性及操纵特性,基于Lagrange方法和椭圆规摆等效机械液体晃动模型建立TSTTV的整车侧向耦合动力学模型,其典型特征是实现罐内液体侧向晃动与车辆横摆运动、侧向运动、悬挂质量的侧倾运动及非线性侧向轮胎力的集成一体化建模,贯通液体晃动动力学与车辆侧向动力学稳定性之间的联系。通过开环正弦停滞转向输入操作响应对所建立的模型进行分析评价,考察车辆横摆角速度、质心侧偏角、侧倾角、侧向载荷转移率及液体晃动角等状态量在2种充液比(FL=40%,80%)及2种罐体椭圆率(Δ=1.0,1.3)下的响应。研究结果表明:所建立的TSTTV模型可以实现液体侧向晃动作用下的车辆侧向耦合动力学仿真分析,能够反映充液比、罐体截面椭圆率等运输条件和罐体几何参数对整车侧倾稳定性、侧向动力学稳定性及操纵特性的影响;基于该模型可以针对液体介质、充液比及道路环境等运输条件因素的影响,研究以提高整车侧向动力学稳定性为目标的TSTTV灌-车整体的优化设计匹配问题,这对提升液罐车的设计性能、提高行驶的安全性和运输效率具有重要意义。  相似文献   
563.
智能汽车测试是其技术开发与应用中必不可少的环节,封闭场景下测试目标物准确反映真实道路环境下交通对象特性是保障测评结果可信的关键,而道路弱势群体服饰色彩是相应测试目标设计的关键参数,也是智能车测评相关标准中要求的一个主要指标。为此,通过对中国某省份2018~2020年间重大交通安全事故案例的分析和筛查,得出178例弱势道路使用者群体伤亡人员样本,首先提取样本服饰颜色,然后选取适当的色彩空间,将色彩数据从RGB(Red-Green-Blue)空间转换至LUV(Lightness-Chroma)空间。以转换结果作为聚类参数,采用K-means聚类算法,获取受害者样本基于季节、出行方式等不同因素下的服饰代表颜色。区别现阶段欧洲标准中目标物黑色上衣/蓝色长裤的搭配组合,黑色上衣/黑色长裤作用于符合中国国情的自动驾驶场景中测试目标物的服饰颜色更具代表性。鉴于中国新车评价规程(China-New Car Assessment Programme, C-NCAP)选取行人目标物与自行车骑行者目标物,将目标物服饰改为黑色上衣/黑色长裤组合,以测试目标物与测试车辆位置分别构建相对横向及纵向运动的多个场景,...  相似文献   
564.
全尺寸汽车空气动力学风洞是汽车空气动力性能重要的研究平台与开发工具。但风洞间测试结果普遍存在差异,这对气动性能的研究与分析造成了一定的困难,因此有必要开展风洞间的横向相关性和修正研究,提高风洞测试结果的统一性和一致性。分别对德国和中国的两座全尺寸汽车风洞进行实车风洞测试,开展风洞相关性及修正研究。研究表明,对于同一工况,不同风洞间的测试结果存在一定差异,但不同工况与基础工况间差异变化趋势一致,大小相似,不同风洞间的测试结果能建立较好的相关关系,形成相关性线性函数。通过空气阻力系数C D 修正方法,可以减小风洞间由结构尺寸、流场参数导致的系统性误差,修正后的风洞间空气阻力系数C D 测试结果差异降低了近60%。  相似文献   
565.
为提高电动汽车用内置式永磁同步电机气隙磁场解析计算精度和优化效率,利用混合解析法建立考虑转子铁心磁桥饱和效应的电机气隙磁场参数化解析模型。首先利用联合等效磁路法的子域法建立内置式永磁同步电机开路气隙磁场解析模型;然后利用同样方法建立转子磁桥虚拟磁场解析模型,从而得到考虑转子磁桥饱和效应的电枢反应磁场解析模型;最后通过叠加原理建立内置式永磁同步电机合成气隙磁场解析模型。通过有限元仿真和转矩测试验证内置式永磁同步电机气隙磁场解析模型的准确性。基于所建立的解析模型,以永磁体极弧宽度、定子槽口宽度和转子端部磁桥厚度为优化变量,以特定阶次频率的径向力波、转矩和效率为优化目标,利用带精英策略的非支配排序遗传算法,对一台电动汽车用内置式永磁同步电机样机进行多变量多目标优化。研究结果表明:与试验结果相比,解析计算误差小于5%,而计算时间较有限元仿真缩短90%以上;优化后,电机特定阶次频率的径向力波减小了9.2%,最大转矩提升了2.49%,最大效率提升了0.69%,高效区面积扩大了约54.46%;所提方法既解决了内置式永磁同步电机强非线性和高饱和的解析建模共性难点,又极大提高了电机多目标优化效率;研究可...  相似文献   
566.
汽车产品开发愈发需要海量且高质量的基础数据作为支撑,汽车工程数据体系非常庞杂且彼此间关联度强,因此,针对汽车工程数据库开发,需站在汽车产品开发者和项目管理者角度为其提供更柔性化、可视化、深度化的数据服务。开发了高压缩比的图形引擎,并设计了一种基于 B/S 架构的汽车工程数据管理平台,以轻量化的三维模型为载体实现工程数据的强关联,较大程度地解决了汽车工程数据管理分散易丢失、完整性和一致性差、不易检索和无法进行数据挖掘等痛点问题,为汽车工程数据管理和重用提供了一个新的思路。  相似文献   
567.
针对行驶过程中由路面引起的汽车振动能量耗散问题,提出了基于汽车振动二自由度单轮模型的能量耗散特性频域分析方法。采用汽车振动二自由度单轮模型推导了模型的频率响应,确定了能量耗散振动响应量及其频率响应。将路面激励功率谱密度与振动响应量的功率谱密度和均方根值相结合,建立了能量耗散振动响应量统计特性和振动能量耗散平均功率的表示。采用Matlab开发了汽车振动二自由度单轮模型的能量耗散特性频域分析仿真程序,通过3种分析方案研究了由路面引起的汽车振动能量耗散特性。结果表明,汽车振动能量耗散平均功率与速度和路面等级相关,受到路面等级的影响较大;在以B级路面为主的国内城市行驶工况下,由路面引起的汽车振动能量耗散平均功率比较低。  相似文献   
568.
城市交通环境中车辆的驾驶行为随机性较高,且驾驶人驾驶风格迥异。为了解决复杂交通环境下车辆行驶轨迹难以精确预测的问题,在社会生成对抗网络(Social GAN)的基础上,考虑车辆的行驶速度、加速度、航向角等行驶状态参数和形状尺寸,建立车辆间交互影响力场模型,提出一种基于时-空注意力机制的车辆轨迹预测算法(SIA-GAN)。根据受到场景中其他车辆交互影响力的大小赋予其他车辆不同的空间注意力权重因子,重点关注对自车行驶影响较大的车辆信息,并结合时间注意力机制挖掘自身车辆对观测时段内历史轨迹特征向量的时间依赖性,得到车辆预测轨迹。为验证所提算法的有效性,在开源数据集上对算法进行迭代训练,并与LSTM、Social LSTM、Social GAN三种轨迹预测算法进行对比分析。研究结果表明:SIA-GAN不仅在训练时的收敛速度上有较大提升,且与现有其他轨迹预测算法相比在平均位移误差、最终位移误差、平均速度误差、平均航向角误差等评价指标均有大幅下降,预测3.2 s时各项指标平均降低了51.25%、60.1%、37.84%、13.75%;预测4.8 s时各项指标平均降低了52.78%、61.47%、3...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号