首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2651篇
  免费   143篇
公路运输   590篇
综合类   1065篇
水路运输   399篇
铁路运输   317篇
综合运输   423篇
  2024年   5篇
  2023年   16篇
  2022年   46篇
  2021年   65篇
  2020年   82篇
  2019年   63篇
  2018年   93篇
  2017年   93篇
  2016年   145篇
  2015年   139篇
  2014年   230篇
  2013年   173篇
  2012年   202篇
  2011年   208篇
  2010年   146篇
  2009年   170篇
  2008年   150篇
  2007年   187篇
  2006年   168篇
  2005年   102篇
  2004年   61篇
  2003年   39篇
  2002年   31篇
  2001年   58篇
  2000年   18篇
  1999年   23篇
  1998年   12篇
  1997年   16篇
  1996年   9篇
  1995年   3篇
  1994年   12篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1986年   1篇
  1984年   1篇
排序方式: 共有2794条查询结果,搜索用时 15 毫秒
91.
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion.  相似文献   
92.
为了给公交优先信号配时系统提供足够的"思考"时间和准确的控制依据,基于重庆市RFID电子车牌数据提出了一种采用自适应渐消卡尔曼滤波和小波神经网络组合模型动态预测公交行程时间的方法。综合分析公交行程时间的动态和静态影响因素,选取的模型输入参量为标准车流量、路段车辆平均行程时间、平均车速离散性和前班次公交行程时间。利用RFID电子车牌系统采集重庆市鹅公岩大桥路段车辆行驶数据,选取3 000组实际运行数据完成公交行程时间预测模型的训练,另筛选50组数据验证模型的有效性和准确性。研究结果表明:组合模型可动态自适应预测公交行程时间,预测值平均相对误差为3.23%,绝对误差集中在8 s左右,明显优于2种单一模型和基于传统GPS数据的公交行程时间预测模型,可认为选择RFID电子车牌数据作为组合模型的输入,能够明显改善模型预测精度;组合模型预测值的残差分布更为集中、鲁棒性较好,泛化能力强。选择平均绝对误差值、均方根误差值和平均绝对百分比误差作为模型评价指标,结果进一步表明,组合模型的综合预测效果明显优于单一的自适应渐消卡尔曼滤波和小波神经网络。研究方案可为先进公交信息化系统提供良好的技术支撑。  相似文献   
93.
随着投入运营的时间增加,高速公路运营管理中的矛盾日益突出,如何确定科学合理的道路收费率,成为道路经营者普遍关注的问题。在收费标准基本模型的基础上提出了收费标准方案评估模型,利用判断矩阵选择最佳方案,并制定了相应的收费标准的动态调整方法。  相似文献   
94.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   
95.
This study investigates how countdown timers installed at a signalized intersection affect the queue discharge characteristics of through movement during the green phase. Since the countdown timers display the time remaining (in seconds) until the onset of the green phase, drivers waiting in the queue at the intersection are aware of the upcoming phase change, and are likely to respond quicker. Thus, the countdown timers could reduce the start-up lost time, decrease the saturation headway, and increase the saturation flow rate. This study observed vehicle flow at an intersection in Bangkok for 24 h when the countdown timers were operating, and for another 24 h when the countdown timers were switched off. The signal plans and timings remained unchanged in both cases. Standard statistical t-tests were used to compare the difference in traffic characteristics between the “with timer” and “without timer” cases. It was found that the countdown timers had a significant impact on the start-up lost time, reducing it by 1.00–1.92 s per cycle, or a 17–32% time saving. However, the effects on saturation headway were found to be trivial, which implies that the countdown timers do not have much impact on the saturation flow rate of signalized intersections, especially during the off-peak day period and the late night period. The savings in the start-up lost time from the countdown timers was estimated to be equivalent to an 8–24 vehicles/h increase for each through movement lane at the intersection being studied.  相似文献   
96.
In a variety of applications of traffic flow, including traffic simulation, real-time estimation and prediction, one requires a probabilistic model of traffic flow. The usual approach to constructing such models involves the addition of random noise terms to deterministic equations, which could lead to negative traffic densities and mean dynamics that are inconsistent with the original deterministic dynamics. This paper offers a new stochastic model of traffic flow that addresses these issues. The source of randomness in the proposed model is the uncertainty inherent in driver gap choice, which is represented by random state dependent vehicle time headways. A wide range of time headway distributions is allowed. From the random time headways, counting processes are defined, which represent cumulative flows across cell boundaries in a discrete space and continuous time conservation framework. We show that our construction implicitly ensures non-negativity of traffic densities and that the fluid limit of the stochastic model is consistent with cell transmission model (CTM) based deterministic dynamics.  相似文献   
97.
As intelligent transportation systems (ITS) approach the realm of widespread deployment, there is an increasing need to robustly capture the variability of link travel time in real-time to generate reliable predictions of real-time traffic conditions. This study proposes an adaptive information fusion model to predict the short-term link travel time distribution by iteratively combining past information on link travel time on the current day with the real-time link travel time information available at discrete time points. The past link travel time information is represented as a discrete distribution. The real-time link travel time is represented as a range, and is characterized using information quality in terms of information accuracy and time delay. A nonlinear programming formulation is used to specify the adaptive information fusion model to update the short-term link travel time distribution by focusing on information quality. The model adapts good information by weighing it higher while shielding the effects of bad information by reducing its weight. Numerical experiments suggest that the proposed model adequately represents the short-term link travel time distribution in terms of accuracy and robustness, while ensuring consistency with ambient traffic flow conditions. Further, they illustrate that the mean of a representative short-term travel time distribution is not necessarily a good tracking indicator of the actual (ground truth) time-dependent travel time on that link. Parametric sensitivity analysis illustrates that information accuracy significantly influences the model, and dominates the effects of time delay and the consistency constraint parameter. The proposed information fusion model bridges key methodological gaps in the ITS deployment context related to information fusion and the need for short-term travel time distributions.  相似文献   
98.
Transit agencies implement many strategies in order to provide an attractive transportation service. This article aims to evaluate the impacts of implementing a combination of strategies, designed to improve the bus transit service, on running time and passenger satisfaction. These strategies include using smart card fare collection, introducing limited-stop bus service, implementing reserved bus lanes, using articulated buses, and implementing transit signal priority (TSP). This study uses stop-level data collected from the Société de transport de Montréal (STM)’s automatic vehicle location (AVL) and automatic passenger count (APC) systems, in Montréal, Canada. The combination of these strategies has lead to a 10.5% decline in running time along the limited stop service compared to the regular service. The regular route running time has increased by 1% on average compared to the initial time period. The study also shows that riders are generally satisfied with the service improvements. They tend to overestimate the savings associated with the implementation of this combination of strategies by 3.5-6.0 min and by 2.5-4.1 min for both the regular route and the limited stop service, respectively. This study helps transit planners and policy makers to better understand the effects of implementing a combination of strategies to improve running time and passenger’s perception of these changes in service.  相似文献   
99.
Travel time reliability is a fundamental factor in travel behavior. It represents the temporal uncertainty experienced by travelers in their movement between any two nodes in a network. The importance of the time reliability depends on the penalties incurred by the travelers. In road networks, travelers consider the existence of a trip travel time uncertainty in different choice situations (departure time, route, mode, and others). In this paper, a systematic review of the current state of research in travel time reliability, and more explicitly in the value of travel time reliability is presented. Moreover, a meta-analysis is performed in order to determine the reasons behind the discrepancy among the reliability estimates.  相似文献   
100.
Vehicle time headway is an important traffic parameter. It affects roadway safety, capacity, and level of service. Single inductive loop detectors are widely deployed in road networks, supplying a wealth of information on the current status of traffic flow. In this paper, we perform Bayesian analysis to online estimate average vehicle time headway using the data collected from a single inductive loop detector. We consider three different scenarios, i.e. light, congested, and disturbed traffic conditions, and have developed a set of unified recursive estimation equations that can be applied to all three scenarios. The computational overhead of updating the estimate is kept to a minimum. The developed recursive method provides an efficient way for the online monitoring of roadway safety and level of service. The method is illustrated using a simulation study and real traffic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号