全文获取类型
收费全文 | 1421篇 |
免费 | 83篇 |
专业分类
公路运输 | 523篇 |
综合类 | 369篇 |
水路运输 | 240篇 |
铁路运输 | 320篇 |
综合运输 | 52篇 |
出版年
2024年 | 6篇 |
2023年 | 13篇 |
2022年 | 31篇 |
2021年 | 49篇 |
2020年 | 56篇 |
2019年 | 40篇 |
2018年 | 50篇 |
2017年 | 58篇 |
2016年 | 62篇 |
2015年 | 57篇 |
2014年 | 68篇 |
2013年 | 50篇 |
2012年 | 233篇 |
2011年 | 88篇 |
2010年 | 58篇 |
2009年 | 56篇 |
2008年 | 63篇 |
2007年 | 107篇 |
2006年 | 81篇 |
2005年 | 68篇 |
2004年 | 61篇 |
2003年 | 37篇 |
2002年 | 18篇 |
2001年 | 16篇 |
2000年 | 13篇 |
1999年 | 7篇 |
1998年 | 9篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 4篇 |
1993年 | 7篇 |
1992年 | 2篇 |
1991年 | 12篇 |
1990年 | 4篇 |
1989年 | 5篇 |
1988年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有1504条查询结果,搜索用时 10 毫秒
51.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1017-1046
The new vehicle platforms for electric vehicles (EVs) that are becoming available are characterised by actuator redundancy, which makes it possible to jointly optimise different aspects of the vehicle motion. To do this, high-level control objectives are first specified and solved with appropriate control strategies. Then, the resulting virtual control action must be translated into actual actuator commands by a control allocation layer that takes care of computing the forces to be applied at the wheels. This step, in general, is quite demanding as far as computational complexity is considered. In this work, a safety-oriented approach to this problem is proposed. Specifically, a four-wheel steer EV with four in-wheel motors is considered, and the high-level motion controller is designed within a sliding mode framework with conditional integrators. For distributing the forces among the tyres, two control allocation approaches are investigated. The first, based on the extension of the cascading generalised inverse method, is computationally efficient but shows some limitations in dealing with unfeasible force values. To solve the problem, a second allocation algorithm is proposed, which relies on the linearisation of the tyre–road friction constraints. Extensive tests, carried out in the CarSim simulation environment, demonstrate the effectiveness of the proposed approach. 相似文献
52.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(11):1517-1540
Proper rail geometry in the crossing part is essential for reducing damage on the nose rail. To improve the dynamic behaviour of turnout crossings, a numerical optimisation approach to minimise rolling contact fatigue (RCF) damage and wear in the crossing panel by varying the nose rail shape is presented in the paper. The rail geometry is parameterised by defining several control cross-sections along the crossing. The dynamic vehicle–turnout interaction as a function of crossing geometry is analysed using the VI-Rail package. In formulation of the optimisation problem a combined weighted objective function is used consisting of the normal contact pressure and the energy dissipation along the crossing responsible for RCF and wear, respectively. The multi-objective optimisation problem is solved by adapting the multipoint approximation method and a number of compromised solutions have been found for various sets of weight coefficients. Dynamic behaviour of the crossing has been significantly improved after optimisations. Comparing with the reference design, the heights of the nose rail are notably increased in the beginning of the crossing; the nominal thicknesses of the nose rail are also changed. All the optimum designs work well under different track conditions. 相似文献
53.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1687-1704
This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design. 相似文献
54.
55.
56.
57.
Fuzzy-logic applied to yaw moment control for vehicle stability 总被引:6,自引:0,他引:6
B. L. Boada M. J. L. Boada V. Dí az 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2005,43(10):753-770
In this paper, we propose a new yaw moment control based on fuzzy logic to improve vehicle handling and stability. The advantages of fuzzy methods are their simplicity and their good performance in controlling non-linear systems. The developed controller generates the suitable yaw moment which is obtained from the difference of the brake forces between the front wheels so that the vehicle follows the target values of the yaw rate and the sideslip angle. The simulation results show the effectiveness of the proposed control method when the vehicle is subjected to different cornering steering manoeuvres such as change line and J-turn under different driving conditions (dry road and snow-covered). 相似文献
58.
L. Auersch 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2005,43(9):671-695
A combined finite-element boundary-element method is presented in detail to calculate the dynamic interaction of the railway track and the underlying soil. A number of results are shown for ballasted and slab track, demonstrating the influence of the stiffness of the soil and the rail pads on the vertical compliance of the track. The compliance of the track is combined with a simple model of the vehicle giving the transfer function of vehicle-track interaction. An experimental verification of the theoretical results is achieved by harmonic and impulse excitation with and without static (train-) load and by combined measurements of train-track-soil interaction. A clear vehicle-track resonance is found for the slab track with elastic rail pads and for higher frequencies at highspeed traffic, the dynamic axle loads due to sleeper passage are reduced. 相似文献
59.
Takao Kobayashi Etsuo Katsuyama Hideki Sugiura Eiichi Ono Masaki Yamamoto 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2017,55(1):104-120
Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power. 相似文献
60.
Insights into vehicle trajectories at the handling limits: analysing open data from race car drivers
John C. Kegelman Lene K. Harbott J. Christian Gerdes 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2017,55(2):191-207
Race car drivers can offer insights into vehicle control during extreme manoeuvres; however, little data from race teams is publicly available for analysis. The Revs Program at Stanford has built a collection of vehicle dynamics data acquired from vintage race cars during live racing events with the intent of making this database publicly available for future analysis. This paper discusses the data acquisition, post-processing, and storage methods used to generate the database. An analysis of available data quantifies the repeatability of professional race car driver performance by examining the statistical dispersion of their driven paths. Certain map features, such as sections with high path curvature, consistently corresponded to local minima in path dispersion, quantifying the qualitative concept that drivers anchor their racing lines at specific locations around the track. A case study explores how two professional drivers employ distinct driving styles to achieve similar lap times, supporting the idea that driving at the limits allows a family of solutions in terms of paths and speed that can be adapted based on specific spatial, temporal, or other constraints and objectives. 相似文献