排序方式: 共有297条查询结果,搜索用时 15 毫秒
51.
52.
以公交车IC 卡和GPS数据为基础,提出了一种基于改进粒子群算法优化极限学习机(IPSO-ELM)的公交站点短时客流预测模型.依托IC 卡和GPS 数据在站点的特征表现和内在联系,定义了站点间距,并分析了站间距和车辆到总站距离间的联系;提出了公交乘客上车站点确定方法,进而得到公交站点上车客流量;通过分析公交客流数据特征,确定ELM输入参数维度,并采用IPSO 算法找到ELM的最优隐含层节点参数;最后依托广州市19 路公交车客流数据仓库进行了方法验证.结果表明:所用优化后的ELM方法预测误差在10%以内,并与应用广泛的SVM、ARIMA和传统ELM模型进行对比分析,发现改进的ELM方法拥有更高的可靠性和泛化性能. 相似文献
53.
短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求. 相似文献
54.
通过对南京市江宁区21路公交线调查,运用Fisher聚类法对全天运营的时间段进行合理的聚类分析,建立兼顾公交公司与乘客利益的多目标数学模型,并应用粒子群算法求解该模型,得到较优公交调度时刻表。 相似文献
55.
配送系统设计时,除了使系统的总费用最小外,还要满足各个需求点对时间的要求.综合考虑选址的物流成本和服务水平,在说明了建模的假设条件后,以经济性为决策目标,以时效性为约束条件,建立了带时效性约束的单个产品混合整数非线性规划模型.根据模型的特殊结构和粒子群算法解决复杂问题的优势,运用粒子群算法进行了求解.将多配送中心选址模型及算法应用于某一快递企业的选址问题,用实际调研的数据得出了一个最优选址方案. 相似文献
56.
基于Isight优化软件和通用有限元软件,以扒杆重量为目标函数,采用粒子群算法(PSO)和遗传算法对某起重船扒杆结构进行了优化设计,并讨论了PSO算法的稳定性。通过对两种算法优化结果的比较分析表明,PSO算法优化效果好,收敛速度快,且计算稳定性高,验证了PSO算法在工程船舶结构优化设计中的有效性。 相似文献
57.
基于改进PSO算法的岩石蠕变模型参数辨识 总被引:1,自引:0,他引:1
微粒群优化(PSO)算法是一类随机全局优化技术,具有收敛速度快、规则简单、易于实现的优点.针对岩石蠕变本构模型参数的辨识问题,本文利用FLAC软件自带的fish语言实现了改进PSO算法对本构模型参数的辨识.该方法从岩石本构模型参数的随机值出发,以蠕变过程中试件变形的实验值与计算值的误差大小作为适应度函数来评价参数的品质,利用改进PSO算法规则实现模型参数的进化,搜索出全局最优的模型参数值,从而实现了岩石蠕变本构模型参数的自适应辨识.利用该方法对页岩蠕变实验进行了仿真研究,实验结果表明:改进的PSO算法用于岩石蠕变模型的参数辨识是有效的. 相似文献
58.
输电网络规划是一个复杂的多变量非线性整数规划问题,针对蚁群算法计算时间长、易陷入局部最优解等问题,本文提出一种新的具有粒子群特征的并行蚁群算法,并应用于输电网络规划.实验结果证明了该算法在输电网络规划优化中应用的可行性和有效性. 相似文献
59.
当突发事件发生后,要求将救援物资在最短的时间内运输到受灾点,而在整个应急救援过程中,应急车辆路径的选择对救援工作起到至关重要的作用,建立应急车辆最优路径选择模型对最优路径选择具有重要作用。介绍基本人工鱼群算法的主要算子并提出一种改进的人工鱼群算法,最后通过算例验证该算法在应急车辆路径选择时具有较好的效果和应用价值。 相似文献
60.
为了定量预测多个外部因素影响下的货运量,建立了混合径向基神经网络模型.该模型以径向基神经网络为模型主体,并结合二阶振荡粒子群优化算法和灰色预测方法构成混合预测模型.该神经网络模型的参数设置更加简便,收敛速度更快.实例预测得到的结果相比较其他预测方法绝对误差值更小,误差变化范围更加稳定,证实了该神经网络模型的有效性,表明了其在多因素影响下的货运量预测中具有很好的适用性. 相似文献