首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5448篇
  免费   329篇
公路运输   1646篇
综合类   1880篇
水路运输   1251篇
铁路运输   728篇
综合运输   272篇
  2024年   26篇
  2023年   63篇
  2022年   121篇
  2021年   230篇
  2020年   251篇
  2019年   137篇
  2018年   121篇
  2017年   168篇
  2016年   158篇
  2015年   254篇
  2014年   470篇
  2013年   373篇
  2012年   472篇
  2011年   527篇
  2010年   344篇
  2009年   318篇
  2008年   330篇
  2007年   392篇
  2006年   341篇
  2005年   195篇
  2004年   132篇
  2003年   76篇
  2002年   57篇
  2001年   56篇
  2000年   26篇
  1999年   27篇
  1998年   15篇
  1997年   9篇
  1996年   13篇
  1995年   9篇
  1994年   7篇
  1993年   12篇
  1992年   11篇
  1991年   9篇
  1990年   12篇
  1989年   7篇
  1988年   5篇
  1985年   1篇
  1984年   2篇
排序方式: 共有5777条查询结果,搜索用时 15 毫秒
81.
Adjusting traffic signal timings is a practical way for agencies to manage urban traffic without the need for significant infrastructure investments. Signal timings are generally selected to minimize the total control delay vehicles experience at an intersection, particularly when the intersection is isolated or undersaturated. However, in practice, there are many other potential objectives that might be considered in signal timing design, including: total passenger delay, pedestrian delays, delay inequity among competing movements, total number of stopping maneuvers, among others. These objectives do not tend to share the same relationships with signal timing plans and some of these objectives may be in direct conflict. The research proposes the use of a new multi-objective optimization (MOO) visualization technique—the mosaic plot—to easily quantify and identify significant tradeoffs between competing objectives using the set of Pareto optimal solutions that are normally provided by MOO algorithms. Using this tool, methods are also proposed to identify and remove potentially redundant or unnecessary objectives that do not have any significant tradeoffs with others in an effort to reduce problem dimensionality. Since MOO procedures will still be needed if more than one objective remains and MOO algorithms generally provide a set of candidate solutions instead of a single final solution, two methods are proposed to rank the set of Pareto optimal solutions based on how well they balance between the competing objectives to provide a final recommendation. These methods rely on converting the objectives to dimensionless values based on the optimal value for each specific objectives, which allows for direct comparison between and weighting of each. The proposed methods are demonstrated using a simple numerical example of an undersaturated intersection where all objectives can be analytically obtained. However, they can be readily applied to other signal timing problems where objectives can be obtained using simulation outputs to help identify the signal timing plan that provides the most reasonable tradeoff between competing objectives.  相似文献   
82.
It is well recognized that the left-turning movement reduces the intersection capacity significantly, because exclusive left turn phases are needed to discharge left turn vehicles only. This paper proposes the concept of Left-Hand Traffic (LHT) arterial, on where vehicles follow left-hand traffic rules as in England and India. The unconventional intersection where a LHT arterial intersects with a Right-Hand Traffic (RHT) arterial is named as symmetric intersection. It is only need three basic signal phases to separate all conflicts at symmetric intersection, while it at least need four signal phases at a conventional intersection. So, compared with the conventional intersection, the symmetric intersection can provide longer green time for the left-turning and the through movement, which can increase the capacity significantly. Through-movement waiting areas (TWAs) can be set at the symmetric intersection effectively, which can increase the capacity and short the cycle length furthermore. And the symmetric intersection is Channelized to improve the safety of TWAs. The Binary-Mixed-Integer-Linear-Programming (BMILP) model is employed to formulate the capacity maximization problem and signal cycle length minimization problem of the symmetric intersection. The BMILP model can be solved by standard branch-and-bound algorithms efficiently and outputs the lane allocation, signal timing decisions, and other decisions. Experiments analysis shows that the symmetric intersection with TWAs can increase the capacity and short the signal cycle length.  相似文献   
83.
In this research, we present a data-splitting algorithm to optimally solve the aircraft sequencing problem (ASP) on a single runway under both segregated and mixed-mode of operation. This problem is formulated as a 0–1 mixed-integer program (MIP), taking into account several realistic constraints, including safety separation standards, wide time-windows, and constrained position shifting, with the objective of maximizing the total throughput. Varied scenarios of large scale realistic instances of this problem, which is NP-hard in general, are computationally difficult to solve with the direct use of commercial solver as well as existing state-of-the-art dynamic programming method. The design of the algorithm is based on a recently introduced data-splitting algorithm which uses the divide-and-conquer paradigm, wherein the given set of flights is divided into several disjoint subsets, each of which is optimized using 0–1 MIP while ensuring the optimality of the entire set. Computational results show that the difficult instances can be solved in real-time and the solution is efficient in comparison to the commercial solver and dynamic programming, using both sequential, as well as parallel, implementation of this pleasingly parallel algorithm.  相似文献   
84.
本文以非均匀有理B样条基函数作为参数体属性,并结合非均匀控制点网格,建立了适用于船体几何的NFFD变形技术。重点阐述了NFFD方法的基本原理和变形规则,并以矩阵表示方法为基础构建了数学模型。研究了控制点数量和分布对变形结果的影响,增加了控制点变形几何的能力并获得了更大的设计空间。最后,以某CNG运输船为例完成了球鼻艏、船艏和船艉部分几何的自动变形。本文的工作为船型优化提供了良好的变形工具。  相似文献   
85.
86.
Two-dimensional multi-objective optimizations have been used for decades for the problems in traffic engineering although only few times so far in the optimization of signal timings. While the other engineering and science disciplines have utilized visualization of 3-dimensional Pareto fronts in the optimization studies, we have not seen many of those concepts applied to traffic signal optimization problems. To bridge the gap in the existing knowledge this study presents a methodology where 3-dimensional Pareto Fronts of signal timings, which are expressed through mobility, (surrogate) safety, and environmental factors, are optimized by use of an evolutionary algorithm. The study uses a segment of 5 signalized intersections in West Valley City, Utah, to test signal timings which provide a balance between mobility, safety and environment. In addition, a set of previous developed signal timing scenarios, including some of the Connected Vehicle technologies such as GLOSA, were conducted to evaluate the quality of the 3-dimensional Pareto front solutions. The results show success of 3-dimensinal Pareto fronts moving towards optimality. The resulting signal timing plans do not show large differences between themselves but all improve on the signal timings from the field, significantly. The commonly used optimization of standard single-objective functions shows robust solutions. The new set of Connected Vehicle technologies also shows promising benefits, especially in the area of reducing inter-vehicular friction. The resulting timing plans from two optimization sets (constrained and unconstrained) show that environmental and safe signal timings coincide but somewhat contradict mobility. Further research is needed to apply similar concepts on a variety of networks and traffic conditions before generalizing findings.  相似文献   
87.
汽车前照灯是整车照明的重要组成,随着时代的发展,汽车前照灯的设计也越来越简单化、多样化。本文针对某车型项目阶段出现的前照灯闪烁问题,从前照灯的控制逻辑展开,分析故障产生的原因,并研究优化方案。  相似文献   
88.
89.
On-demand traffic fleet optimization requires operating Mobility as a Service (MaaS) companies such as Uber, Lyft to locally match the offer of available vehicles with their expected number of requests referred to as demand (as well as to take into account other constraints such as driver’s schedules and preferences). In the present article, we show that this problem can be encoded into a Constrained Integer Quadratic Program (CIQP) with block independent constraints that can then be relaxed in the form of a convex optimization program. We leverage this particular structure to yield a scalable distributed optimization algorithm corresponding to computing a gradient ascent in a dual space. This new framework does not require the drivers to share their availabilities with the operating company (as opposed to standard practice in today’s mobility as a service companies). The resulting parallel algorithm can run on a distributed smartphone based platform.  相似文献   
90.
Seabed in regions, such as the Gulf of Guinea and North West Shelf of Australia, may exhibit a crust layer where the undrained shear strength can be an order of magnitude higher than that of the immediately underlying sediment. This can complicate design of steel catenary risers, where fatigue depends on the cyclic vertical stiffness of the pipe-soil interaction. Potential punch-through of the riser into the underlying soft soil may invalidate design assumptions based on the pipe-soil stiffness within the crust layer. The long-term evolution of pipe-soil stiffness within the crust layer, which exhibits similar properties to an over-consolidated soil, is also poorly understood. This paper describes centrifuge model tests undertaken in a clay sample with a crust layer, simulating the punch-through process of a pipe under load control and investigating the pipe-soil stiffness during long-term cyclic loading tests under displacement control. Results confirm that the potential for punching-through the crust layer depends strongly on the relative ratio of pipe diameter to crust layer thickness. The long-term evolution of pipe-soil stiffness showed a steady increase after an initial remoulding stage in contractile soils (normally consolidated and lightly over-consolidated), but a steady reduction in the heavily over-consolidated, more dilatant, crust. The magnitude of pipe-soil stiffness changes (during both remoulding and reconsolidation) is governed by the over-consolidation ratio of the soil and the amplitude of the cyclic displacements. This study provides insights on the relevant cyclic stiffness to consider when assessing SCR fatigue life in over-consolidated soils and soils exhibiting a superficial crust layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号