首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   8篇
公路运输   81篇
综合类   30篇
水路运输   2篇
铁路运输   36篇
综合运输   10篇
  2024年   1篇
  2022年   7篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   7篇
  2012年   43篇
  2011年   10篇
  2010年   16篇
  2009年   6篇
  2008年   6篇
  2007年   12篇
  2006年   9篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
101.
In this study, a full-scale rail vehicle model is used to investigate how lateral ride comfort is influenced by implementing the H and sky-hook damping control strategies. Simulations show that significant ride comfort improvements can be achieved on straight track with both control strategies compared with a passive system. In curves, it is beneficial to add a carbody centring Hold-Off Device (HOD) to reduce large spring deflections and hence to minimise the risk of bumpstop contact. In curve transitions, the relative lateral displacement between carbody and bogie is reduced by the concept of H control in combination with the HOD. However, the corresponding concept with sky-hook damping degrades the effect of the carbody centring function. Moreover, it is shown that lateral and yaw mode separation is a way to further improve the performance of the studied control strategies.  相似文献   
102.
基于加速度阻尼控制的半主动悬挂研究   总被引:1,自引:1,他引:0  
半主动悬挂是改善铁道车辆振动、提高乘坐舒适度的有效对策。但由于铁道车辆的特殊性和复杂性,车辆动力学系统的精确数学模型很难获得,这限制了现代控制理论在实用化半主动悬挂中的应用;而天棚阻尼控制所需车体的绝对速度很难测量,若采用测得车体加速度积分得到车体绝对速度的方法,其传感器的误差和系统噪声会导致车体绝对速度产生误差,从而影响减振效果。基于上述原因,本文提出加速度阻尼控制方法,即采用与车体加速度成正比的振动衰减力来抑制车体振动,并对加速度阻尼控制方法稳定性进行理论分析和仿真研究。仿真结果证明:与被动悬挂相比,车体振动加速度有效值和最大值在各速度级分别减少了55%~63%和53%~66%,Sperling乘坐指数也得到明显改善;且加速度阻尼控制具有很好的鲁棒性和适应性。可见该方法能有效地提高铁道车辆的平稳性和乘坐舒适性。  相似文献   
103.
ABSTRACT

High-speed electric multiple units (EMUs) have been popularised rapidly all around the world and have become a major transportation method. Increases in running velocity and wheel-rail deterioration lead to excessive vibration and reduced ride comfort, which are common issues encountered in the operation of high-speed EMUs. While built-in sensors on a car body are able to detect abnormal vibrations in the car body itself, they cannot effectively reflect the ride comfort of passengers. Wheel-rail profile matching can improve the wheel-rail interaction, and rail grinding has thus been introduced as a practical solution to alleviating the aforementioned problems. Nonetheless, the working mechanism of rail grinding has not been investigated theoretically. This study develops flexible car body and human body models based on the rigid-flexible coupled method to systematically study the effects of wheel-rail wear and rail grinding on passenger ride comfort. Case studies show that the proposed models can predict the ride comfort of passengers accurately. It is also demonstrated that rail grinding can significantly alleviate excessive vibration and improve passenger ride comfort in the long term. A long-term investigation reveals that rail grinding can improve the smoothness of the rail surface and reduce the damage to the rail.  相似文献   
104.
This paper proposes a neuro-fuzzy (NF) strategy to implement semi-active suspension in passenger vehicles. The proposed method is composed of two parts: a NF controller (NFC), to establish an efficient controller strategy to improve ride comfort and road handling (RCH), and an inverse mapping to estimate the semi-active suspension current. To effectively estimate the current needed to control the semi-active damper, an inverse mapping based on neural network, modified back-propagation (MBP) is presented. The inverse mapping is incorporated into the FC to enhance RCH. Given the relative velocity between the mass and the base and also the absolute acceleration of the mass, the FC computes the optimum damping coefficient. The fuzzy logic rules are extracted based on expert knowledge encapsulated in skyhook and groundhook. A quarter-car model was adopted for the purpose of simulating and experimenting with the proposed NFC. To verify the performance of the FC, two sets of results are reported. First, an experimental analysis was performed to demonstrate the effectiveness of the FC in comparison with the benchmark skyhook and Rakheja–Sankar controllers. Furthermore, a random input was considered to examine the robustness of the NFC in comparison with the other adopted controllers. It was shown that the developed NFC control enhances the performance of the quarter-car system significantly, in terms of both ride comfort and handling characteristics. Second, four FCs with the same control strategies were implemented on a full-vehicle model to demonstrate the effectiveness of the proposed control strategy in reducing the propensity to rollover. It was concluded that the developed FC enhances the RHC and also has the potential to increase the stability of vehicles.  相似文献   
105.
There is a need to further improve driver comfort in commercial vehicles. The variable geometry active suspension offers an interesting option to achieve this in an energy efficient way. However, the optimal control strategy and the overal performance potential remains unclear. The aim of this paper is to quantify the level of performance improvement that can theoretically be obtained by replacing a conventional air sprung cabin suspension design with a variable geometry active suspension. Furthermore, the difference between the use of a linear quadratic (LQ) optimal controller and a classic skyhook controller is investigated. Hereto, an elementary variable geometry actuator model and experimentally validated four degrees of freedom quarter truck model are adopted. The results show that the classic skyhook controller gives a relatively poor performance while a comfort increase of 17–28% can be obtained with the LQ optimal controller, depending on the chosen energy weighting. Furthermore, an additional 75% comfort increase and 77% energy cost reduction can be obtained, with respect to the fixed gain energy optimal controller, using condition-dependent control gains. So, it is concluded that the performance potential using condition-dependent controllers is huge, and that the use of the classic skyhook control strategy should, in general, be avoided when designing active secondary suspensions for commercial vehicles.  相似文献   
106.
Real road vehicle tests are time consuming, laborious, and costly, and involve several safety concerns. Road vehicle motion simulators (RVMS) could assist with vehicle testing, and eliminate or reduce the difficulties traditionally associated with conducting vehicle tests. However, such simulators must exhibit a high level of fidelity and accuracy in order to provide realistic and reliable outcomes. In this paper, we review existing RVMS and discuss each of the major RVMS subsystems related to the research and development of vehicle dynamics. The possibility of utilising motion simulators to conduct ride and handling test scenarios is also investigated.  相似文献   
107.
介绍了日本为开发评定包括新干线列车在内的铁道车辆乘坐舒适度的更适用方法而开展的试验研究成果.  相似文献   
108.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   
109.
More and more commuters are beginning to favour public transportation. Fast and convenient park and ride (PnR) services provided by public transportation authorities are the result of changes of household demographics and household, increasing fuel prices and a focus on environmental sustainability. However, lack of parking spaces in PnR facilities creates a major bottleneck to this service. The aim of this research is to develop a location-based service (LBS) application to help PnR users choose the best train station to use to reach their destination using a multicriteria decision making model. A fuzzy logic method is used to estimate parking availability when a user is estimated to arrive at a PnR facility. Two surveys are conducted to collect traffic flow, travel behaviour and service quality data at four selected Perth Western Australia train stations. With the proposed approach and survey data, a prototype of LBS application, Station Finder, was developed using the Android SDK 4.0 and Google API 16. This application is a useful and practical tool to save travel cost and time of PnR users’.  相似文献   
110.
This paper examines bus ride times of exceptional school children in North Carolina. It uses levels of service data, which show excessive ride times for exceptional school children, to form clusters of local education agencies. From these clusters short term objectives or standards for maximum ride times are determined for each cluster. Among the findings are three distinct clusters of local education agencies (clusters 1, 2 and 3) whose maximum ride times are respectively 170 minutes, 105 minutes and 62 minutes.

The maximum ride times show that only one cluster (cluster 3) provides a service whose maximum ride time is comparable to the ideal maximum ride time (long term objective) of one hour revealed by the literature and also by responses of school superintendents and transportation directors. Methods of achieving these standards are examined. A comparison of the levels of service of regular and exceptional children transportation is also provided.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号