ClassNK has undertaken wide-ranging basic research covering many aspects related to the safety of ship structures, including design loads, structural analysis, strength assessment of buckling, collapse, and fatigue, and rational corrosion margins to develop new design standards which have transparency and consistency. Among the wide-ranging basic research, this article summarizes the results of extensive work on the design loads used for strength assessments of tanker and bulk carrier structures. The main aim of the research was to develop practical estimation methods of design loads with rational technical backgrounds relating to the actual loads acting on the primary structural members of tankers and bulk carriers. During this study, we proposed the following methodology. Design sea states that closely resemble the actual sea states which are considered to be the most severe for hull structures. Find practical estimation methods for the design sea states by parametric studies using the results of series calculations on representative tankers and bulk carriers. Find practical estimation methods for design regular waves which will result in the same level of stresses as those induced in irregular waves under the design sea states. We also briefly introduced some practical estimation methods for the design loads, such as ship motions, accelerations, hull-girder bending moments, and hydrodynamic pressures that are induced under design regular waves. The findings in this study have been summarized and implemented in the new design standards for tanker and bulk carrier structures.Updated from the Japanese original which won the 2003 SNAJ prize (J Soc Nav Archit Jpn 2002; 191:195–207; 2002; 191:208–220; and 2002; 192:723–733) 相似文献
A three-level procedure for assessing jack-up foundation stability for more or less homogenous soils is described. The objective is to provide a rational framework for these assessments that ensures their safe operation in extended year-round operations and enables their use in deeper waters than at present.
The three levels of the procedure have to be entered successively as long as foundation stability cannot be proven. The first level is a screening exercise and essentially replaces the well-known preload check. The second level compares factored foundation loads resulting from a structural analysis with foundation capacities obtained with ultimate bearing capacity formulae. The most refined third level assesses whether the displacements associated with these loads lead to an acceptable situation, i.e. capacity increase and/or load redistribution that does not result in collapse of the jack-up unit.
Since, for maximum benefit, this third-stage analysis requires a non-linear foundation model to be linked with the structural package used: such a tool is provided in the paper. Examples are given to demonstrate the impact of the assessment procedure.
This procedure forms part of the overall in-house approach to the assessment of jack-ups and has already been offered to the jack-up industry as part of the continuing efforts towards establishing common and accepted standards for jack-up assessments. Further developments have been identified and will be pursued. 相似文献