首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1993篇
  免费   121篇
公路运输   585篇
综合类   411篇
水路运输   635篇
铁路运输   247篇
综合运输   236篇
  2024年   10篇
  2023年   17篇
  2022年   38篇
  2021年   58篇
  2020年   60篇
  2019年   45篇
  2018年   34篇
  2017年   61篇
  2016年   58篇
  2015年   130篇
  2014年   174篇
  2013年   105篇
  2012年   169篇
  2011年   203篇
  2010年   156篇
  2009年   108篇
  2008年   125篇
  2007年   169篇
  2006年   117篇
  2005年   82篇
  2004年   39篇
  2003年   30篇
  2002年   28篇
  2001年   20篇
  2000年   18篇
  1999年   7篇
  1998年   8篇
  1997年   13篇
  1996年   6篇
  1995年   6篇
  1994年   7篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有2114条查询结果,搜索用时 265 毫秒
41.
本文结合无锡市圩区的自然条件.对圩区地面迳流成因及水量平衡、典型年份水位持续天数及对应降水量、排涝标准与圩区地面标高的关系等问题作了分析探讨;对提高圩区规划地面标准作了准优化计算。  相似文献   
42.
张碧琴  李霞  李江华  田茂 《公路》2005,(5):67-70
自然环境条件对公路工程的影响,主要体现在路线选取、路基强度和稳定性、路面稳定性和耐久性、公路主要自然病害(包括冻融、翻浆、雪害、风沙害、崩塌、滑坡和地震灾害等)、施工条件和养护运营环境等5个方面,分析自然条件和公路工程的关系,提出公路区划中地质地貌环境参数和水热状况环境参数。阐述了环境参数的提出过程,为新疆公路自然区划三级区的划分提供依据。  相似文献   
43.
Emissions of GHG from the transport sector and how to reduce them are major challenges for policy makers. The purpose of this paper is to analyse the level of greenhouse gas (GHG) emissions from ships while in port based on annual data from Port of Gothenburg, Port of Long Beach, Port of Osaka and Sydney Ports. Port call statistics including IMO number, ship name, berth number and time spent at berth for each ship call, were provided by each participating port. The IMO numbers were used to match each port call to ship specifications from the IHS database Sea-web. All data were analysed with a model developed by the IVL Swedish Environmental Research Institute for the purpose of quantifying GHG emissions (as CO2-equivalent) from ships in the port area. Emissions from five operational modes are summed in order to account for ship operations in the different traffic areas. The model estimates total GHG emissions of 150,000, 240,000, 97,000, and 95,000 tonnes CO2 equivalents per year for Gothenburg, Long Beach, Osaka, and Sydney, respectively. Four important emission-reduction measures are discussed: reduced speed in fairway channels, on-shore power supply, reduced turnaround time at berth and alternative fuels. It is argued that the potential to reduce emissions in a port area depends on how often a ship revisits a port: there it in general is easier to implement measures for high-frequent liners. Ships that call 10 times or less contribute significantly to emissions in all ports.  相似文献   
44.
Public transit systems with high occupancy can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but current transit systems have not been designed to reduce environmental impacts. This motivates the study of the benefits of design and operational approaches for reducing the environmental impacts of transit systems. For example, transit agencies may replace level-of-service (LOS) by vehicle miles traveled (VMT) as a criterion in evaluating design and operational changes. In previous work, we explored the unintended consequences of lowering transit LOS on emissions in a single-technology transit system. Herein, we extend the analysis to account for a more realistic case: a transit system with a hierarchical structure (trunk and feeder lines) providing service to a city where demand is elastic. By considering the interactions between the trunk and the feeder systems, we provide a quantitative basis for designing and operating integrated urban transit systems that can reduce GHG emissions and societal costs. We find that highly elastic transit demand may cancel emission reduction potentials resulting from lowering LOS, due to demand shifts to lower occupancy vehicles. However, for mass transit modes, these potentials are still significant. Transit networks with buses, bus rapid transit or light rail as trunk modes should be designed and operated near the cost-optimal point when the demand is highly elastic, while this is not required for metro. We find that the potential for unintended consequences increases with the size of the city. Our results are robust to uncertainties in the costs and emissions parameters.  相似文献   
45.
交通安全,涉及到人、车以及道路和环境等很多因素。近年来,因为各种原因使得有关单位以及人员将更多的将精力放在人、车、道路这几个因素上,对道路交通环境没有过多的考虑和研究。深入研究道路交通环境,有利于道路交通的安全,文章通过对其的研究和分析,得出有关道路交通环境对交通安全的影响和解决措施,对于防止道路交通安全事故具有重要意义。同时为人们的生命财产的安全提供保障、对构建社会主义和谐社会具有很大帮助。  相似文献   
46.
Heated pavement systems (HPS) offer an attractive alternative to the cumbersome process of removing ice and snow from airport pavements using traditional snow removal systems. Although snow and ice removing efficiency and economic benefits of HPS have been assessed by previous studies, their environmental impact is not well known. Airport facilities offering public or private services need to evaluate the energy consumption and global warming potential of different types of snow and ice removal systems. Energy usage and emissions from the operations of hydronic heated pavement system using geothermal energy (HHPS-G), hydronic HPS using natural gas furnace (HHPS-NG), electrically heated pavement system (EHPS), and traditional snow and ice removal system (TSRS) are estimated and compared in this study using a hybrid life cycle assessment (LCA). Based on the system models assessed in this study, HPS application in the apron area seems to be a viable option from an energy or environmental perspective to achieve ice/snow free pavement surfaces without using mechanical or chemical methods. TSRS methods typically require more energy and they produce more greenhouse gas (GHG) emissions compared to HPS during the operation phase, under the conditions and assumptions considered in this study. Also, HPS operations require less energy and have less GHG emissions during a snow event with a smaller snowfall rate and a larger snow duration.  相似文献   
47.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   
48.
Tailpipe emissions from vehicles on urban road networks have damaging impacts, with the problem exacerbated by the common occurrence of congestion. This article focuses on carbon dioxide because it is the largest constituent of road traffic greenhouse gas emissions. Local Government Authorities (LGAs) are typically responsible for facilitating mitigation of these emissions, and critical to this task is the ability to assess the impact of transport interventions on road traffic emissions for a whole network.This article presents a contemporary review of literature concerning road traffic data and its use by LGAs in emissions models (EMs). Emphasis on the practicalities of using data readily available to LGAs to estimate network level emissions and inform effective policy is a relatively new research area, and this article summarises achievements so far. Results of the literature review indicate that readily available data are aggregated at traffic level rather than disaggregated at individual vehicle level. Hence, a hypothesis is put forward that optimal EM complexity is one using traffic variables as inputs, allowing LGAs to capture the influence of congestion whilst avoiding the complexity of detailed EMs that estimate emissions at vehicle level.Existing methodologies for estimating network emissions based on traffic variables typically have limitations. Conclusions are that LGAs do not necessarily have the right options, and that more research in this domain is required, both to quantify accuracy and to further develop EMs that explicitly include congestion, whilst remaining within LGA resource constraints.  相似文献   
49.
The greenhouse gas (GHG) emissions associated with road construction activities are analyzed. The main focus of this analysis is on the vehicle emissions associated with alternative project staging approaches, specifically a full closure of the road during construction, versus an intermittent road closure. The analysis includes the direct and upstream emissions associated with materials, construction equipment, mobilization of resources to the work site, and maintenance activity associated with the project over its lifetime. The analysis is based on one case study of a road project in New Jersey. The assumptions underlying the staging analysis are based on hypothetical approaches. Results provide an assessment of the main sources of project related emissions and the ability to minimize total project emissions by minimizing traffic disruption. In the analysis with a full closure of the road, traffic disruption accounts for 26% of total emissions, while with an intermittent road closure, traffic disruption accounts for only 2% of total emissions. The other main sources are from materials and life-cycle maintenance. The analysis demonstrates the feasibility of minimizing project related GHG emissions during road construction activities.  相似文献   
50.
FPSO (floating, production, storage and offloading) units are widely used in the offshore oil and gas industry. Generally, FPSOs have excellent oil storage capacity owing to their huge oil cargo holds. The volume and distribution of stored oil in the cargo holds influence the strain level of hull girder, especially at critical positions of FPSO. However, strain prediction using structural analysis tools is computationally expensive and time consuming. In this study, a prediction tool based on back-propagation (BP) neural network called GAIFOA-BP is proposed to predict the strain values of concerned positions of an FPSO model under different oil storage conditions. The GAIFOA-BP combines BP model and GAIFOA which is a combination of genetic algorithm (GA) and an improved fruit fly optimization algorithm (IFOA). Results from three benchmark tests show that the GAIFOA-BP model has a remarkable performance. Subsequently, a total of 81 sets of training data and 25 sets of testing data are obtained from experiment using fiber Bragg grating (FBG) sensors installed on the surface of an FPSO model. The numerical results show that the GAIFOA-BP is capable of predicting the strain values with higher accuracy as compared with other BP models. Finally, the reserved GAIFOA-BP model is utilized to predict the strain values under the inputs of a 10-day time series of volume and distribution of stored oil. The predicted strain results are further used to calculate the fatigue consumption of measurement points.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号