全文获取类型
收费全文 | 2308篇 |
免费 | 162篇 |
专业分类
公路运输 | 707篇 |
综合类 | 501篇 |
水路运输 | 683篇 |
铁路运输 | 522篇 |
综合运输 | 57篇 |
出版年
2024年 | 19篇 |
2023年 | 23篇 |
2022年 | 41篇 |
2021年 | 81篇 |
2020年 | 105篇 |
2019年 | 65篇 |
2018年 | 35篇 |
2017年 | 57篇 |
2016年 | 58篇 |
2015年 | 66篇 |
2014年 | 183篇 |
2013年 | 134篇 |
2012年 | 204篇 |
2011年 | 237篇 |
2010年 | 155篇 |
2009年 | 127篇 |
2008年 | 137篇 |
2007年 | 191篇 |
2006年 | 176篇 |
2005年 | 117篇 |
2004年 | 70篇 |
2003年 | 45篇 |
2002年 | 27篇 |
2001年 | 15篇 |
2000年 | 14篇 |
1999年 | 6篇 |
1998年 | 13篇 |
1997年 | 6篇 |
1996年 | 7篇 |
1995年 | 3篇 |
1994年 | 7篇 |
1993年 | 8篇 |
1992年 | 8篇 |
1991年 | 6篇 |
1990年 | 2篇 |
1989年 | 5篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 7篇 |
1984年 | 5篇 |
排序方式: 共有2470条查询结果,搜索用时 0 毫秒
991.
为得到平转桥竖转摩阻力矩精确计算值,根据球铰受力机理,建立球铰竖转摩阻力矩空间计算模型,推导出新的球铰摩阻力矩计算公式。通过10多座转体桥不平衡重称重试验实测的最大静摩阻力矩,反算得到最大静摩擦因数。将之与由竖转试验实测启动力反算得到的最大静摩擦因数进行对比分析,结果表明两者一致性很好,从而验证了新公式的准确性和合理性。 相似文献
992.
轮轨磨耗及滚动接触疲劳损伤是影响大轴重列车运行安全的重要因素,本文基于多体动力学软件UM建立了40 t轴重重载货车动力学模型,从轮轨磨耗、疲劳损伤2个角度,研究曲线半径对40 t轴重货车通过曲线时动力性能的影响,给出最小曲线半径的建议取值。研究结果表明:货车在曲线上运行时,轮轨磨耗和疲劳损伤均在小半径曲线上更严重;与400 m曲线半径相比,曲线半径800 m时轮轨磨耗降低68%,轮轨间出现轮缘接触的频次得到有效控制;曲线半径1 200 m时轮轨磨耗和疲劳损伤分别降低80%,58%,滚动圆外侧10~30 mm内基本不再出现疲劳损伤。建议最小曲线半径一般情况下取1 200 m,困难情况下取800 m。 相似文献
993.
994.
本文对不同型式同步电机热计算与通风计算,提出一套简化的计算方法,计算中考虑了有影响的各种因素,有助于设计者对电机发热、温升及通风设计作出适当评估,并对方案优选提供适当依据. 相似文献
995.
996.
众所周知,多数圬工拱桥结构的破坏都是由于其下部基础的沉降、变位等原因引发的。但具体的基础变形量计算方法及其对上部结构的影响程度并没有被人们详细研究,这里对发生垮塌事故的北方地区某三跨乱石拱桥进行分析。根据现场勘测数据进行桥位处水文、冲刷计算,确定1#桥墩基础的沉降量及变形量,并借助MIDAS/CIVIL有限元计算软件模拟这种基础变位对上部主拱圈结构的影响程度,得出了导致该桥坍塌的根本原因。可为类似桥梁工程的养护管理及事故鉴定等提供思路和参考。 相似文献
997.
针对高硫煤还原分解磷石膏的反应复杂性,采用FactSage 6.1计算软件对其化学热力学平衡反应进行计算,并与相同条件下的磷石膏分解反应试验结果进行了比较.结果表明高硫煤还原分解磷石膏的主要产物为CaO,CaS,SO2等.综合分析表明温度是影响高硫煤还原分解磷石膏产物组成及含量的重要因素且在1 100℃时分解效果较好,可作为最佳温度的选择标准.计算结果虽与试验结果在确定组分含量上存有一定差异但产物组成及变化趋势相近,表明化学热力学平衡分析方法可作为磷石膏分解反应特性研究的指导性手段. 相似文献
998.
999.
列车牵引计算是整个城市轨道交通的重要组成部分.本文采用IEEE1474.1关于CBTC系统推荐的典型的安全制动模型,提出了一种城市轨道交通牵引计算模型,较好地实现了在整个列车运行过程中牵引过程的模拟.并在成都地铁1号线的基础上进行了仿真验证,证明了其可应用性. 相似文献
1000.
由于土体挖除、管片和二衬的设置,盾构施工过程中周围地层土体的初始状态会受到影响,导致上部结构产生不均匀沉降及横向位移,影响桥梁运营。结合盾构下穿既有线工程,采用Midas/GTS软件对盾构下穿结构进行建模计算,分析施工引起的桥墩和桥台的沉降特征。结果表明:地铁盾构掘进过程中右桥洞东2号-北侧桥墩(第32步开挖)沉降最大,为6.8 mm;相邻墩台的最大沉降差产生在右线开挖过程中西0-西1、西1-西2、西2-东2墩台(第32步开挖)开挖结束时,为2 mm。在此基础上提出下穿施工时维持桥梁稳定应满足的技术指标:墩台均匀总沉降量小于25 mm,相邻墩台的纵向沉降差小于2 mm,同一墩台的横向沉降差小于3 mm,墩台的水平位移小于3 mm。 相似文献