首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1809篇
  免费   79篇
公路运输   546篇
综合类   332篇
水路运输   575篇
铁路运输   357篇
综合运输   78篇
  2024年   8篇
  2023年   19篇
  2022年   48篇
  2021年   85篇
  2020年   79篇
  2019年   49篇
  2018年   31篇
  2017年   88篇
  2016年   60篇
  2015年   82篇
  2014年   128篇
  2013年   68篇
  2012年   147篇
  2011年   147篇
  2010年   106篇
  2009年   87篇
  2008年   107篇
  2007年   112篇
  2006年   129篇
  2005年   91篇
  2004年   58篇
  2003年   35篇
  2002年   24篇
  2001年   26篇
  2000年   15篇
  1999年   10篇
  1998年   10篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   7篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有1888条查询结果,搜索用时 15 毫秒
331.
高速列车司机室内气动噪声预测   总被引:3,自引:0,他引:3  
为了降低司机室内的噪声, 采用大涡模拟法计算了高速列车车头曲面的脉动压力, 将脉动压力作为头车司机室有限元分析的激励载荷, 通过谐响应分析求得司机室壁板的振动速度, 将振动速度作为司机室声场边界元模型的激励条件, 求出了司机室内的气动噪声在不同频率点的声压分布。计算结果表明: 司机室内的声压级在52.3~58.8dB (A) 之间变化, 声压级较大点位于司机室前窗玻璃向车顶过渡处及纵向中截面型线附近, 且在50~315Hz之间, 声压幅值较大; 司机室内的气动噪声主要是低频噪声, 对纵向中截面型线采取更平滑的过渡形式, 可降低司机室内的气动噪声。  相似文献   
332.
刚性阻振降噪技术的应用研究及发展   总被引:1,自引:0,他引:1  
综述了刚性阻振降噪技术的研究概况,包括声振动在不连续突变结构中传播特性以及阻振质量块的应用研究现状,并首次阐述了阻振质量块在水下复杂双壳减振降噪中的应用,结果表明阻振质量块在中高频段能有效降低壳体的振动及声辐射,为刚性阻振技术的实艇应用提供了研究基础。最后展望了刚性阻抗失配减振技术在实际水下航行结构中的发展趋势。  相似文献   
333.
基于模态应变能法及结构动力学优化理论,研究提高船用阻尼材料应用效果的多种方法。方法1是在满足所使用阻尼材料重量相同的条件下,首先对阻尼材料进行一定百分比的开孔,与同等重量的实心阻尼材料结构相比,贴敷开孔阻尼材料的结构损耗因子得到了提高;其次,以所用阻尼材料重量为优化目标函数,在满足给定的整体结构损耗因子约束条件下,建立贴敷阻尼材料复合悬臂板优化模型。方法2主要优化设计复合板不同区域阻尼材料的厚度值。方法3则主要针对复合板不同区域阻尼材料的分布进行拓扑优化设计,得出在给定复合板前3阶模态损耗因子约束条件下阻尼材料的最佳厚度值和拓扑分布。研究结果表明:阻尼材料上一定百分比的开孔可有效提高结构减振效果;通过重量目标函数及考虑损耗因子约束的阻尼材料结构厚度优化和拓扑分布优化,可以找到满足指定减振要求下阻尼材料用量最小的结构,且拓扑分布优化效果更好。  相似文献   
334.
基于结构动力学优化设计理论,研究了潜艇典型舱段双层圆柱壳舷间高传递损失复合托板结构。通过初步优化,得到隔振效果最优的刚性阻振质量块的最优截面尺寸和布设位置,并将最优参数的刚性阻振质量块等效为相同截面惯性矩的球扁钢。在满足舱段总重量及危险截面结构强度的约束条件下,以舱段非耐压壳体全频域内的平均振动加速度级为目标函数,对高传递损失复合托板的开孔半径和托板角度进行动力学优化设计,得到最优振动特性的复合托板形式。由优化结果得到,在中、高频段内,高传递损失复合托板有明显的降噪作用,舱段非耐压壳体全频域内的平均振动加速度级降低了1.66 dB。  相似文献   
335.
轨道交通轮轨噪声预测模型   总被引:11,自引:2,他引:9  
为了准确预测轮轨噪声, 在分析轮轨噪声产生机理的基础上, 运用车辆-轨道耦合动力学理论、噪声辐射与传播理论, 建立了轮轨噪声预测模型。在模型中, 车轮采用LOVE圆环模型, 钢轨采用Timoshenko梁模型, 轮轨接触采用Hertz非线性弹性接触。模型计算结果与国际知名软件TWINS的仿真结果比较表明, 各轮轨部件的噪声峰值频率不尽相同, 但对总噪声贡献的主要频率范围是一致的; 模型声级频谱计算值与秦沈客运专线高速行车试验的现场实测值比较吻合, 且变化趋势一致。由此说明轮轨噪声预测模型是可行的, 可用于铁路轮轨噪声的预测与评价。  相似文献   
336.
以喇叭型空腔为例分析了声波在尖劈空腔中的传播规律,给出了计及空腔能量耗散作用的尖劈结构吸声系数计算方法,通过声管测试验证了本文算法的有效性。在此基础上,通过数值试验预报了声呐平台区振动及自噪声分布,对比分析了空腔尖劈敷设方案对其声学特性的影响。结果表明:空腔对较低频段声波能量吸收有很大作用,在3 kHz以下频段计算空腔尖劈吸声性能时必须予以考虑;敷设空腔尖劈的声呐平台区的振动及自噪声总声压级显著降低,尖劈部分优化敷设既要兼顾声呐基阵位置处的声压压分布。  相似文献   
337.
柯李菊  刘成洋  方智 《中国舰船研究》2020,36(5):167-175, 182
  目的  针对单一腔型声学覆盖层低频隔声性能和耐压性能较差的特点,使用COMSOL有限元软件计算组合空腔结构声学覆盖层的声学性能和在静水压力下的变形量。  方法  将COMSOL软件仿真结果与前人的实验值进行对比,以验证采用COMSOL软件计算声学覆盖层隔声量和吸声系数的有效性,并研究组合空腔几何尺寸和小孔结构对声学覆盖层的隔声、吸声和耐压性能的影响。  结果  结果表明:声学覆盖层的空腔体积越大,低频段的隔声性能越好,中、高频段的吸声性能变差, 相邻空腔之间的距离增大会降低低频段的隔声量;空腔对耐压性能的影响在于其体积占比越大,耐压性能越差; 在组合空腔四周布置一定数量的圆柱小孔会提高声学覆盖层低频段的隔声和吸声性能,并使峰值频率向低频移动。  结论  因此,组合空腔中几何尺寸的选取需考虑低频隔声性能与耐压性能之间的平衡,在组合空腔四周布置圆柱小孔也能改善声学覆盖层的低频声学性能。  相似文献   
338.
介绍了宽频型迷宫式约束阻尼钢轨的降噪原理,通过现场测试阻尼装置安装前后列车通过高架桥曲线段时车厢内、司机室、高架桥噪声数据,经过A计权声压级处理得出不同测点的降噪效果,以确定高架线路段阻尼钢轨的控制频带范围。测试结果表明:对于车厢内和司机室噪声,800 Hz频率处降噪效果最好,500~3 150 Hz频带内有效降噪5.0~7.7 dB(A);对于高架桥环境辐射噪声,2 000 Hz频率处降噪效果最好,7.5 m处平均降噪8.4 dB(A),30 m处平均降噪5.2 dB(A)。  相似文献   
339.
针对列车通过城市轨道交通高架时引起的桥梁-声屏障系统结构噪声问题,在某市域铁路箱梁段分别选取无声屏障和直立式声屏障地段,开展噪声现场测试;通过对比无声屏障和直立式声屏障地段的测试结果,分析了箱梁-声屏障系统结构噪声的频谱特性;基于有限元-边界元法,建立了箱梁-声屏障系统振动声辐射数值计算模型,研究了箱梁-声屏障系统结构噪声的空间分布规律,探讨了车速和声屏障高度对箱梁-声屏障系统结构噪声的影响。研究结果表明:当列车以约93 km·h-1的速度通过时,直立式声屏障对高频轮轨噪声起到了很好的降噪作用,但会使低频结构噪声增大;声屏障结构噪声的影响主要集中于160 Hz以下的低频段,箱梁-声屏障系统结构噪声的峰值出现在63 Hz左右;箱梁-声屏障系统结构噪声呈现出近场随距离衰减较快,远场随距离衰减越来越慢的趋势,箱梁正上方和正下方的结构噪声均超过96 dB,距离桥梁中心线120 m处的结构噪声衰减至72 dB;声屏障结构噪声对于梁侧声场的影响较大,与无声屏障地段相比,设置了高度为3.15 m的直立式声屏障之后,梁侧结构噪声增大了2~5 dB;当车速由93 km·h-1增大到120 km·h-1时,箱梁-声屏障系统结构噪声辐射在梁侧最大增加7 dB以上;当声屏障高度由3.15 m增大至6.3 m时,箱梁-声屏障系统结构噪声辐射在梁侧最大增加3 dB以上。  相似文献   
340.
针对人工检测效率低、变形检测车定位不准、噪点剔除困难、数据处理滞后等技术难题,基于盾构隧道管片环缝灰度图像数学形态特征,通过图像滑窗方式,利用直方图均衡化、缩放、阈值判定等方法快速自动识别环缝,并依据环缝已知位置反向修正隧道里程; 基于距离最小二乘法椭圆曲线拟合,建立了盾构隧道激光扫描噪点三次迭代自动剔除方法; 通过对管片环上各单环激光扫描数据拟合椭圆进行均值处理,并与隧道设计参数或上次检测结果比对,确定了隧道断面变形; 以轨检小车为载体,集成断面三维激光扫描仪、倾角仪、编码器、测距轮和计算机等设备,研制了盾构隧道断面变形快速检测车,开发了配套的数据采集和处理软件,并进行了工程试验和实际应用。研究结果表明:检测时速为5 km·h-1时,检测车系统隧道内水平和垂直方向直径复测差值绝对值小于2 mm的占比分别为98.41%和96.21%,小于1 mm的占比分别为82.36%和71.92%,系统复测精度为2 mm,多数可达到1 mm,说明环缝识别、噪点剔除、整环收敛变形算法和检测系统具有较高的稳定性和重现性; 检测车可自动采集和处理数据,检测作业后24 h可输出检测分析报告,结果准确可靠,可为盾构隧道结构健康评定和养护提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号