全文获取类型
收费全文 | 5862篇 |
免费 | 484篇 |
专业分类
公路运输 | 2770篇 |
综合类 | 1462篇 |
水路运输 | 410篇 |
铁路运输 | 1369篇 |
综合运输 | 335篇 |
出版年
2024年 | 29篇 |
2023年 | 81篇 |
2022年 | 288篇 |
2021年 | 443篇 |
2020年 | 330篇 |
2019年 | 195篇 |
2018年 | 154篇 |
2017年 | 189篇 |
2016年 | 207篇 |
2015年 | 236篇 |
2014年 | 401篇 |
2013年 | 273篇 |
2012年 | 617篇 |
2011年 | 464篇 |
2010年 | 303篇 |
2009年 | 284篇 |
2008年 | 337篇 |
2007年 | 356篇 |
2006年 | 332篇 |
2005年 | 207篇 |
2004年 | 165篇 |
2003年 | 113篇 |
2002年 | 76篇 |
2001年 | 70篇 |
2000年 | 28篇 |
1999年 | 14篇 |
1998年 | 18篇 |
1997年 | 39篇 |
1996年 | 41篇 |
1995年 | 24篇 |
1994年 | 11篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 8篇 |
1990年 | 6篇 |
1988年 | 1篇 |
排序方式: 共有6346条查询结果,搜索用时 0 毫秒
31.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):301-337
According to European regulations, if the amount of regenerative braking is determined by the travel of the brake pedal, more stringent standards must be applied, otherwise it may adversely affect the existing vehicle safety system. The use of engine or vehicle speed to derive regenerative braking is one way to avoid strict design standards, but this introduces discontinuity in powertrain torque when the driver releases the acceleration pedal or applies the brake pedal. This is shown to cause oscillations in the pedal input and powertrain torque when a conventional driver model is adopted. Look-ahead information, together with other predicted vehicle states, are adopted to control the vehicle speed, in particular, during deceleration, and to improve the driver model so that oscillations can be avoided. The improved driver model makes analysis and validation of the control strategy for an integrated starter generator (ISG) hybrid powertrain possible. 相似文献
32.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):451-470
This paper presents the results of a comprehensive study on heavy-duty vehicle (HDV) roll stability improvement technology. The proposed rollover threat warning system uses the real-time dynamic model-based time-to-rollover (TTR) metric as a basis for online rollover detections. Its feasibility for implementation in a HDV rollover threat detection system is demonstrated through vehicle dynamic simulation studies. The research on the development of a rollover threat detection system is further enhanced in combination with an active roll control system using active suspension mechanism to improve heavy-duty trucks’ roll stability both in the static cornering and in emergency maneuvers. It has been demonstrated that the roll stability of typical heavy-duty trucks has been largely improved by the proposed active safety monitoring and control system. 相似文献
33.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):387-401
In recent years so-called ‘virtual test rigs’ have become more and more important in the development process of cars and trucks. Originally, the idea was to substitute expensive durability tests with computer simulation. Meanwhile, the focus has changed towards a more cooperative usage of numerical and laboratory rig simulation. For many safety critical issues laboratory tests remain indispensable. In early development stages, when no physical prototypes are available yet, numerical simulation is used to analyse and optimise the design. In this paper, we show how to build numerical simulation models of complex servo-hydraulic test systems and their test specimen using multi-body simulation for the mechanics in combination with simulation models for the hydraulics and controls. We illustrate this at two industrial application examples: a spindle-coupled passenger car suspension rig and a tyre-coupled full vehicle rig. We show how the simulation models are used to design and optimise better test rigs and to support the test rig operation by preparing the physical tests with new specimen, i.e. by performing numerical simulations including numerical drive file iteration before the physical tests start. 相似文献
34.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):507-528
In the first part of this study, the potential performance benefits of fluidically coupled passive suspensions were demonstrated through analyses of suspension properties, design flexibility and feasibility. In this second part of the study, the dynamic responses of a vehicle equipped with different configurations of fluidically coupled hydro-pneumatic suspension systems are investigated for more comprehensive assessments of the coupled suspension concepts. A generalised 14 degree-of-freedom nonlinear vehicle model is developed and validated to evaluate vehicle ride and handling dynamic responses and suspension anti-roll and anti-pitch characteristics under various road excitations and steering/braking manoeuvres. The dynamic responses of the vehicle model with the coupled suspension are compared with those of the unconnected suspensions to demonstrate the performance potential of the fluidic couplings. The dynamic responses together with the suspension properties suggest that the full-vehicle-coupled hydro-pneumatic suspension could offer considerable potential in realising enhanced ride and handling performance, as well as improved anti-roll and anti-pitch properties in a very flexible and energy-saving manner. 相似文献
35.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1147-1166
Optimum values are selected for the suspension damping and stiffness parameters of complex car models, subjected to road excitation, by applying suitable numerical methodologies. These models result from a detailed finite-element discretisation and possess a relatively large number of degrees of freedom. They also involve strongly nonlinear characteristics, due mostly to large rigid body rotation of some of their components and the properties of the connection elements. First, attention is focused on gaining some insight into the dynamics of the mechanical models examined, resulting when the vehicle passes over roads involving typical geometric profiles. Then, the emphasis is shifted to presenting results obtained by applying appropriate optimisation methodologies. For this purpose, three classes of design criteria are first set up, referring to passenger ride comfort, suspension travel and car road holding and yielding the most important suspension stiffness and damping parameters. Originally, the optimisation is performed by forming a composite cost function and employing a single-objective optimisation method. Since the design criteria are conflicting, a multi-objective optimisation methodology is also set up and applied subsequently. 相似文献
36.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1245-1265
A traction control system (TCS) for two-wheel-drive vehicles can conveniently be realised by means of slip control. Such a TCS is modified in this paper in order to be applicable to four-wheel-drive vehicles and anti-lock braking systems, where slip information is not readily available. A reference vehicle model is used to estimate the vehicle velocity. The reference model is excited by a saw-tooth signal in order to adapt the slip for maximum tyre traction performance. The model-based TCS is made robust to vehicle modelling errors by extending it with (i) a superimposed loop of tyre static curve gradient control or (ii) a robust switching controller based on a bi-directional saw-tooth excitation signal. The proposed traction control strategies are verified by experiments and computer simulations. 相似文献
37.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(11):1061-1082
The dynamic model was developed to evaluate vibration accelerations and ride comforts during the running of the Korean-standardised rubber-tired light rail vehicle. Ride comfort indexes were analysed and tested in accordance with UIC 513R by using the dynamic model and the actual vehicle in the test track. Based on the comparisons between analysis results and test results, the validity of the developed dynamic model was evaluated. It was verified whether or not the developed Korean-standardised rubber-tired light rail vehicle met the specified target specification on ride comfort. In addition, the influence of the wearing of guide wheels on ride comfort was estimated. 相似文献
38.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):527-559
The paper addresses the need for improved mathematical models of human steering control. A multiple-model structure for a driver's internal model of a nonlinear vehicle is proposed. The multiple-model structure potentially offers a straightforward way to represent a range of driver expertise. The internal model is combined with a model predictive steering controller. The controller generates a steering command through the minimisation of a cost function involving vehicle path error. A study of the controller performance during an aggressive, nonlinear steering manoeuvre is provided. Analysis of the controller performance reveals a reduction in the closed-loop controller bandwidth with increasing tyre saturation and fixed controller gains. A parameter study demonstrates that increasing the multiple-model density, increasing the weights on the path error, and increasing the controller knowledge range all improved the path following accuracy of the controller. 相似文献
39.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1477-1496
This work presents a virtual rider for the guidance of a nonlinear motorcycle model. The target motion is defined in terms of roll angle and speed. The virtual rider inputs are the steering torque, the rear-wheel driving/braking torque and front-wheel braking torque. The virtual rider capability is assessed by guiding the nonlinear motorcycle model in demanding manoeuvres with roll angles of 50° and longitudinal accelerations up to 0.8 g. Considerations on the effective preview distance used by the virtual rider are included. 相似文献
40.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1521-1532
The steady-state handling properties of a rigid vehicle with a tandem rear axle configuration are developed. This work uses conventions resulting in a parsimonious characterisation of steady-state handling of such three-axle vehicles that is shown to be a simple extension of the well-known two-axle bicycle model. Specifically the concepts of understeer and wheelbase are developed for a three-axle vehicle, and shown to play the same role in characterising vehicle handling as they do in the well-known two-axle vehicle model. An equivalent wheelbase of a three-axle vehicle is expressed in terms of vehicle geometry and cornering stiffness of each axle. The model developed in this work is reconciled with previous models that make use of simplifying assumptions found in the literature. 相似文献