首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3265篇
  免费   203篇
公路运输   813篇
综合类   737篇
水路运输   1215篇
铁路运输   661篇
综合运输   42篇
  2024年   13篇
  2023年   44篇
  2022年   65篇
  2021年   106篇
  2020年   140篇
  2019年   130篇
  2018年   96篇
  2017年   120篇
  2016年   120篇
  2015年   146篇
  2014年   213篇
  2013年   170篇
  2012年   282篇
  2011年   259篇
  2010年   194篇
  2009年   178篇
  2008年   181篇
  2007年   255篇
  2006年   224篇
  2005年   141篇
  2004年   90篇
  2003年   69篇
  2002年   33篇
  2001年   45篇
  2000年   26篇
  1999年   18篇
  1998年   12篇
  1997年   14篇
  1996年   16篇
  1995年   16篇
  1994年   9篇
  1993年   12篇
  1992年   4篇
  1991年   5篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1985年   2篇
  1984年   4篇
排序方式: 共有3468条查询结果,搜索用时 15 毫秒
51.
综述了对于制动器噪声问题能进行较为有效控制且得到应用的研究技术成果,利用在研究制动器噪声问题发生机理的基础上发展的系统模态综合模型分析方法,对一个存在低频噪声的制动器进行了分析.找出了影响噪声发生的关键构件是制动器支架,对其进行了改进设计,通过按照SAE J2521标准进行的台架试验,证明其有效性,并将原制动器按SAE...  相似文献   
52.
Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses – the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle–track–soil interaction – have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle–track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave.  相似文献   
53.
A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models.  相似文献   
54.
This paper presents the influence of dynamic and geometrical soil parameters on the propagation of ground vibrations induced by external loads. The proposed approach is based on a three-dimensional model, focusing on realistic excitation sources like impulse loads and moving railway vehicles. For the latter, a complete vehicle/track model is developed. The simulation is performed in time domain, offering an interesting approach, compared with classic cyclic analyses. The ground is modelled initially as an elastic homogeneous half-space and additionally as a layered half-space. First, the effect of homogeneous soil properties on ground vibration is analysed. Soil stratification is then taken into account, using various configurations. Analysis reveals that as receiver distance increases ground wave reflection in a layered ground plays an important role in the reduction of ground surface motion. This effect is magnified when the phase velocity wavelength becomes large compared with the depth of the surface layer.  相似文献   
55.
A vertical vehicle–track coupled dynamic model, consisting of a high-speed train on a continuously supported rail, is established in the frequency-domain. The solution is obtained efficiently by use of the Green's function method, which can determine the vibration response over a wide range of frequency without any limitations due to modal truncation. Moreover, real track irregularity spectra can be used conveniently as input. The effect of the flexibility of both track and car body on the entire vehicle–track coupled dynamic response is investigated. A multi-body model of a vehicle with either rigid or flexible car body is defined running on three kinds of track: a rigid rail, a track stiffness model and a Timoshenko beam model. The results show that neglecting the track flexibility leads to an overestimation of both the contact force and the whole vehicle vibration response. The car body flexibility affects the ride quality of the vehicle and the coupling through the track and can be significant in certain frequency ranges. Finally, the effect of railpad and ballast stiffness on the vehicle–track coupled vibration is analysed, indicating that the stiffness of the railpad has an influence on the system in a higher frequency range than the ballast.  相似文献   
56.
Accurately estimating the coefficient of friction (CoF) is essential in modelling railroad dynamics, reducing maintenance costs, and increasing safety in rail operations. The typical assumption of a constant CoF is widely used in theoretical studies; however, it has been noticed that the CoF is not constant, but rather depends on various dynamic parameters and instantaneous conditions. In this paper, we present a newly developed three-dimensional nonlinear CoF model for the dry rail condition and test the CoF variation using this model with estimated dynamic parameters. The wheel–rail is modelled as a mass–spring–damper system to simulate the basic wheel–rail dynamics. Although relatively simple, this model is considered sufficient for the purpose of this study. Simulations are performed at a train speed of 20 m/s using rail roughness as an excitation source. The model captures the CoF extremes and illustrates its nonlinear behaviour and instantaneous dependence on several structural and dynamic parameters.  相似文献   
57.
Damage to the surface of railway wheels and rails commonly occurs in most railways. If not detected, it can result in the rapid deterioration and possible failure of rolling stock and infrastructure components causing higher maintenance costs. This paper presents an investigation into the modelling and simulation of wheel-flat and rail surface defects. A simplified mathematical model was developed and a series of experiments were carried out on a roller rig. The time–frequency analysis is a useful tool for identifying the content of a signal in the frequency domain without losing information about its time domain characteristics. Because of this, it is widely used for dynamic system analysis and condition monitoring and has been used in this paper for the detection of wheel flats and rail surface defects. Three commonly used time–frequency analysis techniques: Short-Time Fourier Transform, Wigner–Ville transform and wavelet transform were investigated in this work.  相似文献   
58.
This research reviews principles behind the dynamic response of rail supports, and introduces a method of analysis to find the maximum response in a realistic setting. Assuming a time-dependent, moving mass with massive wheels is essential, because the ratio of the moving mass to the rail mass is significant. However, the dynamic response of the track is not affected by dynamic properties of the train other than its unsprung mass, because the natural frequencies of the train suspension and track are significantly different. A numerical method is developed to model the dynamic response based on these principles, and applied to the Korean urban transit. The dynamic response includes multiple peaks with a large amplitude range, creating noise while the wheel passes the support. The dynamic impact factor (DIF) for the rail support depends mainly on the stiffness and damping of the rail support. The DIF for the rail moment is below the code value, whether this value is based on numerical analysis or on-site measurements. However, our numerical analysis results in a DIF for support settlement that is greater than the code value, if the damping is less than 3%.  相似文献   
59.
The sleeper-passing impact has always been considered negligible in normal conditions, while the experimental data obtained from a High-speed train in a cold weather expressed significant sleeper-passing impacts on the axle box, bogie frame and car body. Therefore, in this study, a vertical coupled vehicle/track dynamic model was developed to investigate the sleeper-passing impacts and its effects on the dynamic performance of the high-speed train. In the model, the dynamic model of vehicle is established with 10 degrees of freedom. The track model is formulated with two rails supported on the discrete supports through the finite element method. The contact forces between the wheel and rail are estimated using the non-linear Hertz contact theory. The parametric studies are conducted to analyse effects of both the vehicle speeds and the discrete support stiffness on the sleeper-passing impacts. The results show that the sleeper-passing impacts become extremely significant with the increased support stiffness of track, especially when the frequencies of sleeper-passing impacts approach to the resonance frequencies of wheel/track system. The damping of primary suspension can effectively lower the magnitude of impacts in the resonance speed ranges, but has little effect on other speed ranges. Finally, a more comprehensively coupled vehicle/track dynamic model integrating with a flexible wheel set is developed to discuss the sleeper-passing-induced flexible vibration of wheel set.  相似文献   
60.
The traction control system (TCS) might prevent excessive skid of the driving wheels so as to enhance the driving performance and direction stability of the vehicle. But if driven on an uneven low-friction road, the vehicle body often vibrates severely due to the drastic fluctuations of driving wheels, and then the vehicle comfort might be reduced greatly. The vibrations could be hardly removed with traditional drive-slip control logic of the TCS. In this paper, a novel fuzzy logic controller has been brought forward, in which the vibration signals of the driving wheels are adopted as new controlled variables, and then the engine torque and the active brake pressure might be coordinately re-adjusted besides the basic logic of a traditional TCS. In the proposed controller, an adjustable engine torque and pressure compensation loop are adopted to constrain the drastic vehicle vibration. Thus, the wheel driving slips and the vibration degrees might be adjusted synchronously and effectively. The simulation results and the real vehicle tests validated that the proposed algorithm is effective and adaptable for a complicated uneven low-friction road.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号