全文获取类型
收费全文 | 12508篇 |
免费 | 1519篇 |
专业分类
公路运输 | 3663篇 |
综合类 | 4248篇 |
水路运输 | 3209篇 |
铁路运输 | 2130篇 |
综合运输 | 777篇 |
出版年
2025年 | 163篇 |
2024年 | 425篇 |
2023年 | 356篇 |
2022年 | 450篇 |
2021年 | 535篇 |
2020年 | 547篇 |
2019年 | 446篇 |
2018年 | 439篇 |
2017年 | 466篇 |
2016年 | 443篇 |
2015年 | 602篇 |
2014年 | 859篇 |
2013年 | 713篇 |
2012年 | 1016篇 |
2011年 | 985篇 |
2010年 | 809篇 |
2009年 | 726篇 |
2008年 | 695篇 |
2007年 | 914篇 |
2006年 | 745篇 |
2005年 | 462篇 |
2004年 | 298篇 |
2003年 | 204篇 |
2002年 | 120篇 |
2001年 | 151篇 |
2000年 | 90篇 |
1999年 | 65篇 |
1998年 | 52篇 |
1997年 | 45篇 |
1996年 | 50篇 |
1995年 | 33篇 |
1994年 | 18篇 |
1993年 | 26篇 |
1992年 | 18篇 |
1991年 | 14篇 |
1990年 | 12篇 |
1989年 | 15篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1986年 | 7篇 |
1985年 | 3篇 |
1984年 | 4篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
211.
利用KIVA-3V程序平台,建立起适用于不同掺氢比HCNG发动机燃烧模拟的数值模型。通过试验缸压值和燃烧放热率与模拟结果的对比,验证了该模型可靠性。利用该模型研究了0、30%和55%这3种不同掺氢比HCNG发动机燃烧过程中的缸内温度分布状态。研究结果表明,掺氢可以降低点火延迟期,提高燃烧速度和燃烧稳定性;掺氢比越高,缸内最高燃烧温度越高,不利于氮氧化物排放;可以通过增加过量空气系数、降低燃烧温度来减少氮氧化物排放。 相似文献
212.
213.
分析了各种常用轮胎模型的特点与应用范围,根据汽车操纵动力学研究的需求,在Matlab环境下运用魔术公式建立了轮胎动力学模型,并对汽车轮胎力与纵向滑移率,纵向力、侧向力及回正力矩与纵向滑移率、侧偏角、外倾角、垂直载荷的关系等轮胎特性进行了仿真分析,实验结果表明,魔术公式轮胎动力学模型可以较好地模拟轮胎的动力学特性,适用于车辆动力学研究领域。 相似文献
214.
本文在对斯太尔重型汽车的双轴转向传动机构进行分析的基础上建立了数学模型,研究了各部分的传动过程,并采用MATLAB语言编写了转向传动机构分析程序,对转向轴内外轮之间,前后轮间的转角匹配,以及最小转弯半径的匹配关系进行了优化。 相似文献
215.
为了预先掌握多轴轮式工程机械制动性能,指导制动系统设计,以某四轴轮式工程机械为对象,考虑了地面附着条件、质心位置、制动产生的轴荷转移等因素,进行了制动性能仿真研究。通过车轮坐标系与整车坐标系映射关系,对悬挂和车轮的小变形作线性假设,建立了整机在制动稳定极限状态下的动力学模型,利用MATLAB/Simulink分析附着系数、质心相对位置、制动初速度对制动距离的影响,并将仿真结果与试验结果进行了对比。结果表明:仿真结果与试验结果吻合良好;随地面附着系数和质心距离第Ⅰ轴中心线位置的增加,整车制动距离减小;随制动初速度和质心距离地面高度的提高,整车制动距离增加;相对静止状态,制动过程中第Ⅰ轴和第Ⅳ轴轴荷变化最显著。 相似文献
216.
217.
本文提出了一种基于电动伺服缸加载的电动助力转向系统实验平台,并对该实验台进行数学建模,建立了其整体仿真模型,模拟分析了车辆在实际运行中轮胎力的变化以及EPS的动态特性响应。 相似文献
218.
219.
为将准静荷载试验法中动态荷载-沉降曲线转换为静态荷载-沉降曲线,并尽量与工程实际相接近,对已有分析方法进行了适用性探讨和分析比较,在原有理论基础上提出了新的C模型分析方法,将整个试验过程中桩-土系统的阻尼系数按照理论前提随时间变化分为3段,各段分别计算,最后组合成随时间变化的阻尼系数曲线。然后根据单质点模型的平衡方程计算出静态P-S曲线。借助大型计算软件MATLAB,对具体工程实例分别采用已有方法与C模型法分别进行编程计算。计算结果表明:C模型法计算出的静态P-S曲线处于由卸载点法和起始刚度法得出的静态曲线之间,该方法能较合理地分析准静载荷试验法的荷载-沉降曲线。 相似文献
220.
灾害事件下局域路网应急疏散交通分配模型 总被引:2,自引:0,他引:2
应急疏散的目的是要在灾害发生时将处于危险地带的人群尽快转移至安全地带。针对不同灾害事件类型而引发的单源单汇、单(多)源多汇网络状态的路网疏散问题分别进行了分析。在各路段通行能力的约束条件下,以疏散交通流量最大、总疏散时间最小为优化目标,运用最小费用最大流理论建立了局域路网疏散分配模型。通过实例对模型进行了求解,并在Matlab中得到了实现。通过查找最小截量组成弧的分布位置,并对路网中最小截量组成弧的路段扩容改造,进而有效提高局域路网的应急疏散能力。 相似文献