首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   826篇
  免费   61篇
公路运输   426篇
综合类   197篇
水路运输   122篇
铁路运输   119篇
综合运输   23篇
  2024年   8篇
  2023年   40篇
  2022年   34篇
  2021年   45篇
  2020年   33篇
  2019年   48篇
  2018年   19篇
  2017年   11篇
  2016年   34篇
  2015年   36篇
  2014年   41篇
  2013年   35篇
  2012年   44篇
  2011年   74篇
  2010年   44篇
  2009年   50篇
  2008年   46篇
  2007年   46篇
  2006年   45篇
  2005年   26篇
  2004年   23篇
  2003年   22篇
  2002年   15篇
  2001年   15篇
  2000年   12篇
  1999年   7篇
  1998年   8篇
  1997年   7篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
排序方式: 共有887条查询结果,搜索用时 15 毫秒
871.
砂质海床特性极大地影响波浪与海工单桩基础结构的相互作用,而将多孔介质海床简化为刚性、 不可渗透固体海床,忽视了多孔介质海床对波浪能量的影响.研究砂质海床孔隙率、 介质颗粒平均粒径对单桩所受波浪荷载的影响,设计5种不同海床特性的波浪水槽试验.研究结果表明:在相同波浪条件下,砂质海床结构内部的孔隙流对波浪能量产生衰减作用,...  相似文献   
872.
南海岛礁工程设施在长期服役过程中可能面临地震和强烈波浪侵袭的风险,了解珊瑚砂的动力特性对于评价岛礁设施在地震作用下的稳定性至关重要。通过对南海某岛礁饱和珊瑚砂开展不排水单调和循环剪切试验,研究了密度和有效围压对珊瑚砂单调剪切应力-应变关系和有效应力路径的影响,揭示了密度、有效围压以及循环应力比对珊瑚砂抗液化强度、动孔隙水压上升和轴向变形的发展规律。试验结果表明:中密和密实珊瑚砂不排水单调剪切试验在50~400 kPa围压范围内都表现出应变硬化现象;珊瑚砂抗液化强度曲线伴随相对密度的增加而提升,伴随有效围压的增大而降低;相同试验条件下,循环荷载作用下珊瑚砂试样的颗粒破碎量小于单调加载。基于多组不同工况下不排水单调和循环三轴试验结果,建立了珊瑚砂不排水相变点正规化静力抗剪强度和液化抵抗强度的关联表达式,该关联表达式的建立对于珊瑚砂抗液化强度的预测有较好的参考作用。  相似文献   
873.
为降低沥青路面夏季高温、缓解城市热岛效应,以铯钨青铜纳米颗粒(Cs0.3WO3)为功能材料制备环氧树脂基沥青路面光学遮蔽降温涂层,对制得涂层的光学性能、降温性能与降温机理进行了系统研究。首先进行Cs0.3WO3纳米颗粒表面改性、工艺流程优化,以制备分散性较高的光学遮蔽涂层,对比分析了优化前后Cs0.3WO3颗粒自身及其在涂层中的分散性;其次,测试不同Cs0.3WO3含量涂层的光学性能(反射率R、透射率T)与降温性能(试验全程最大降温值Cmax、平均降温值Cm),研究了涂层光学性能与降温性能的变化规律,以此为基础分析得到影响涂层降温性能的重要光学指标,并建立其与降温性能的相关性,明确降温机理;再次,提出量化表征涂层遮蔽性能更合适、更简单的指标——遮蔽率(S),并研究涂层降温性能随该指标的变化规律;最后,通过室内试验对涂层与路表的黏附性能、抗滑性能与耐磨耗性能进行测试。研究...  相似文献   
874.
沥青混合料是一种集料颗粒占体积主导并同时表现出明显时温依赖性的颗粒路面材料,从颗粒物质角度认识和理解沥青混合料,是接近和阐释沥青混合料物质属性和行为特性的根本基础。该文旨在基于非晶物质及其玻璃化转变、Jamming转变模型和颗粒物质理论,揭示沥青路面材料的颗粒物质属性。介绍了颗粒路面材料的概念和内涵,阐释了沥青混合料的颗粒物质属性,综述了颗粒路面材料的研究进展,凝练了颗粒路面材料的四大基本特征(几何特征、堆积特征、界面特征和流变特征),并讨论了颗粒路面材料的未来发展方向。结果表明:可以尝试从非晶物质的角度研究沥青在沥青混合料中的行为特性及其对整个系统发挥的作用;对非晶物质的研究宜从多尺度展开并能将不同尺度间关联起来。进一步研究中,还需从时间和空间2个维度剖析沥青混合料Jamming过程中细观结构演化规律,理解沥青混合料流变学行为;从颗粒和尺度的角度,阐释沥青混合料的稳定堆积条件和高效堆积方法,揭示不同工况下沥青混合料Jamming的触变机制;研究不同温度、填充密度和受力模式等条件下沥青混合料的流变过程,建立涵盖实际道路使用条件范围的沥青混合料Jamming相图。  相似文献   
875.
选择性催化还原过滤器(Selective Catalytic Reduction Filter, SCRF)是具有很大发展潜力的发动机污染物处理手段,作为兼具SCR和DPF两部分功能的后处理装置,能够帮助减小后处理装置体积和费用,或者在不缩减体积的情况下获得更好的污染物处理效果。但SCRF内部多种组分构成的复杂的反应体系和较宽的工作温度窗口导致对系统污染物处理效果的预测难度提高很多。全面梳理了近年来SCRF在以下两个方面的研究成果:一是影响DeNOx效率和被动再生效率的表观因素,一是SCRF微观化学反应与传质机制,有利于研究者开展微观机理和SCRF配套优化研究。  相似文献   
876.
为了提高非球形颗粒垂直液压输送系统的效率和安全性,采用一种新型带切向射流入口的管道输送系统。基于计算流体力学-离散元法(CFD-DEM)耦合方法,采用改进的非球形曳力系数模型对液固两相流动特性进行分析。研究不同切向流动比例对不同形状颗粒浓度和曳力的影响。根据颗粒的浓度来衡量输送效率,依据颗粒的曳力来评估输送安全性。结果表明:在旋流作用下,不同形状颗粒之间的浓度间隙和轴向阻力间隙减小,颗粒浓度增大,各组分颗粒混合输送均匀。  相似文献   
877.
殷长燕 《公路》2023,(5):326-329
废旧轮胎带来了极大的环境负面效应,将废弃轮胎胶粉掺入混凝土路面中进行再利用是解决废弃轮胎的有效途径之一。现将轮胎颗粒等质量替代天然骨料掺入混凝土中以探究其工作性能和力学性能。结果表明:胶粉颗粒的掺入虽然能降低普通混凝土的密度,增加其延性和抗弯强度,但是对拌和料的工作性能、力学性能如抗压强度等都有不同程度的影响,胶粉的加入增加了混凝土的稠度使得其坍落度降低,掺入适量的胶粉颗粒(低于7.5%)能增加混凝土抗压和抗折强度,此后随着胶粉骨料的增加,混凝土的强度迅速衰减,研究为废弃轮胎在混凝土路面中的应用提供了一定的参考依据。  相似文献   
878.
纳米陶瓷铝合金是采用物理或化学的方法,以铝或铝合金为基体,由一种或多种不同性质的增强物质组合而成的一种多项固体材料,该材料不仅具有基体铝合金高塑性的优点,同时具备了增强颗粒高硬度、高模量的优点。纳米陶瓷铝合金具有良好的综合性能,可广泛应用于航空航天、电子电气、汽车等领域。重点介绍了一种通过化学方法在铝合金基体中原位自生出纳米陶瓷颗粒,该方法制备出的纳米陶瓷铝合金具有轻质、高刚度、高强度、高抗疲劳、耐高温的优越性能,其力学性能远高于铝合金,同时保持了铝合金良好的加工制造性能。  相似文献   
879.
以提高整体捕集性能为目的开展柴油机颗粒捕集器(DPF)结构参数多目标优化设计,利用GT-Power建立DPF捕集模型,通过发动机台架试验验证了仿真模型的可靠性。以最大压降和初始过滤效率为优化目标,以孔隙率、孔直径、壁厚、过滤体长度和直径5个结构参数为优化变量,基于Box-Behnken试验设计方法构建了DPF捕集性能二阶响应面模型,通过三维响应面图对结构参数显著性与交互作用进行仿真分析,采用满意度函数法进行多目标参数优化。结果表明,孔直径对最大压降的影响较小,较小的孔隙率与壁厚、较大的过滤体直径有利于降低DPF最大压降,而适当增大过滤体直径与壁厚可提升DPF初始捕集效率。协同优化后的DPF压降较优化前下降51.34%,优化后的DPF初始过滤效率趋近于100%。  相似文献   
880.
滚刀位于全断面隧道掘进机(TBM)最前端,与岩石直接发生接触,是执行破岩掘进的关键零部件.研究TBM滚刀截面轮廓(刃形)对其破岩性能的影响机理和规律,对指导工程实际中滚刀选型与设计、提高TBM掘进效率具有重要意义.首先建立二维颗粒流离散元模型,针对工程中最常用的平头滚刀和圆弧滚刀,选取两种强度不同的岩石并对其中一种施加固定10 MPa围压;然后,开展滚刀破岩仿真,通过分析比能、破岩体积、刀具载荷、裂纹数量等结果,对滚刀刃形与岩石破碎的关联性进行研究;最后,通过缩比滚刀破岩实验验证数值分析所得结论的正确性.分析结果表明:滚刀刃形对其破岩性能影响显著,在本文所涉及参数范围内,对于多数岩石强度与围压组合,圆弧滚刀比能均低于平头滚刀比能,平均降低19.8%;圆弧滚刀破岩力比平顶滚刀破岩力平均低32.6%,表明破岩过程中圆弧滚刀做功较少,而二者产生的岩石碎片总体积相差不大(平均差值7%),则圆弧滚刀破除单位体积岩石所消耗的能量更少.综上所述,两种常用滚刀刃形相比,在岩石强度与围压较高的地层中可考虑优先选用圆弧滚刀.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号