首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2623篇
  免费   81篇
公路运输   617篇
综合类   865篇
水路运输   258篇
铁路运输   389篇
综合运输   575篇
  2024年   12篇
  2023年   4篇
  2022年   16篇
  2021年   46篇
  2020年   62篇
  2019年   29篇
  2018年   69篇
  2017年   50篇
  2016年   74篇
  2015年   101篇
  2014年   189篇
  2013年   162篇
  2012年   178篇
  2011年   219篇
  2010年   162篇
  2009年   182篇
  2008年   211篇
  2007年   287篇
  2006年   249篇
  2005年   131篇
  2004年   81篇
  2003年   33篇
  2002年   33篇
  2001年   40篇
  2000年   20篇
  1999年   10篇
  1998年   9篇
  1997年   14篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有2704条查询结果,搜索用时 46 毫秒
61.
The integration of internet and mobile phones has opened the door to a new wave of utilizing private vehicles as probes not only for performance evaluation but for traffic control as well, gradually replacing the role of traffic surveillance systems as the dominant source of traffic data. To prepare for such a paradigm shift, one needs to overcome some key institutional barriers, in particular, the privacy issue. A Highway Voting System (HVS) is proposed to address this issue in which drivers provide link- and/or path-based vehicle data to the traffic management system in the form of “votes” in order to receive favorable service from traffic control. The proposed HVS offers a platform that links data from individual vehicles directly with traffic control. In the system, traffic control responds to voting vehicles in a way similar to the current system responding to prioritized vehicles and providing the requested services accordingly. We show in the paper that the proposed “voting” system can effectively resolve the privacy issue which often hampers traffic engineers from getting detailed data from drivers. Strategies to entice drivers into “voting” so as to increase the market penetration level under all traffic conditions are discussed. Though the focus of the paper is on addressing the institutional issues associated with data acquisition from individual vehicles, other research topics associated with the proposed system are identified. Two examples are given to demonstrate the impact of the proposed system on algorithm development and traffic control.  相似文献   
62.
Congestion charging is being considered as a potential measure to address the issue of substantially increased traffic congestion and vehicle emissions in Beijing. This study assessed the impact of congestion charging on traffic and emissions in Beijing using macroscopic traffic simulation and vehicle emissions calculation. Multiple testing scenarios were developed with assumptions in different charging zone sizes, public transit service levels and charging methods. Our analysis results showed that congestion charging in Beijing may increase public transit use by approximately 13%, potentially reduce CO and HC emissions by 60–70%, and reduce NOx emissions by 35–45% within the charging zone. However, congestion charging may also result in increased travel activities and emissions outside of the charging zone and a slight increase in emissions for the entire urban area. The size of charging zone, charging method, and charging rate are key factors that directly influence the impact of congestion charging; improved public transit service needs to be considered as a complementary approach with congestion charging. This study is used by Beijing Transportation Environment and Energy Center (BTEC) as reference to support the development of Beijing’s congestion charging policy and regulation.  相似文献   
63.
Traffic metering offers great potential to reduce congestion and enhance network performance in oversaturated urban street networks. This paper presents an optimization program for dynamic traffic metering in urban street networks based on the Cell Transmission Model (CTM). We have formulated the problem as a Mixed-Integer Linear Program (MILP) capable of metering traffic at network gates with given signal timing parameters at signalized intersections. Due to the complexities of the MILP model, we have developed a novel and efficient solution approach that solves the problem by converting the MILP to a linear program and several CTM simulation runs. The solution algorithm is applied to two case studies under different conditions. The proposed solution technique finds solutions that have a maximum gap of 1% of the true optimal solution and guarantee the maximum throughput by keeping some vehicles at network gates and only allowing enough vehicles to enter the network to prevent gridlocks. This is confirmed by comparing the case studies with and without traffic metering. The results in an adapted real-world case study network show that traffic metering can increase network throughput by 4.9–38.9% and enhance network performance.  相似文献   
64.
To connect microscopic driving behaviors with the macro-correspondence (i.e., the fundamental diagram), this study proposes a flexible traffic stream model, which is derived from a novel car-following model under steady-state conditions. Its four driving behavior-related parameters, i.e., reaction time, calmness parameter, speed- and spacing-related sensitivities, have an apparent effect in shaping the fundamental diagram. Its boundary conditions and homogenous case are also analyzed in detail and compared with other two models (i.e., Longitudinal Control Model and Intelligent Driver Model). Especially, these model formulations and properties under Lagrangian coordinates provide a new perspective to revisit the traffic flow and complement with those under Eulerian coordinate. One calibration methodology that incorporates the monkey algorithm with dynamic adaptation is employed to calibrate this model, based on real-field data from a wide range of locations. Results show that this model exhibits the well flexibility to fit these traffic data and performs better than other nine models. Finally, a concrete example of transportation application is designed, in which the impact of three critical parameters on vehicle trajectories and shock waves with three representations (i.e., respectively defined in x-t, n-t and x-n coordinates) is tested, and macro- and micro-solutions on shock waves well agree with each other. In summary, this traffic stream model with the advantages of flexibility and efficiency has the good potential in level of service analysis and transportation planning.  相似文献   
65.
The greenhouse gas (GHG) emissions associated with road construction activities are analyzed. The main focus of this analysis is on the vehicle emissions associated with alternative project staging approaches, specifically a full closure of the road during construction, versus an intermittent road closure. The analysis includes the direct and upstream emissions associated with materials, construction equipment, mobilization of resources to the work site, and maintenance activity associated with the project over its lifetime. The analysis is based on one case study of a road project in New Jersey. The assumptions underlying the staging analysis are based on hypothetical approaches. Results provide an assessment of the main sources of project related emissions and the ability to minimize total project emissions by minimizing traffic disruption. In the analysis with a full closure of the road, traffic disruption accounts for 26% of total emissions, while with an intermittent road closure, traffic disruption accounts for only 2% of total emissions. The other main sources are from materials and life-cycle maintenance. The analysis demonstrates the feasibility of minimizing project related GHG emissions during road construction activities.  相似文献   
66.
In this study, the effects of isolated traffic calming measures and area-wide calming schemes on air quality in a dense neighborhood were estimated using a combination of microscopic traffic simulation, emission, and dispersion modeling. Results indicated that traffic calming measures did not have as large an effect on nitrogen dioxide (NO2) concentrations as the effect observed on nitrogen oxide (NOx) emissions. Changes in emissions resulted in highly disproportional changes in pollutant levels due to daily meteorological conditions, road geometry and orientation with respect to the wind. Average NO2 levels increased between 0.1% and 10% with respect to the base-case while changes in NOx emissions varied between 5% and 160%. Moreover, higher wind speeds decreased NO2 concentrations on both sides of the roadway. Among the traffic calming measures, speed bumps produced the highest increases in NO2 levels.  相似文献   
67.
This paper proposes and analyzes a distance-constrained traffic assignment problem with trip chains embedded in equilibrium network flows. The purpose of studying this problem is to develop an appropriate modeling tool for characterizing traffic flow patterns in emerging transportation networks that serve a massive adoption of plug-in electric vehicles. This need arises from the facts that electric vehicles suffer from the “range anxiety” issue caused by the unavailability or insufficiency of public electricity-charging infrastructures and the far-below-expectation battery capacity. It is suggested that if range anxiety makes any impact on travel behaviors, it more likely occurs on the trip chain level rather than the trip level, where a trip chain here is defined as a series of trips between two possible charging opportunities (Tamor et al., 2013). The focus of this paper is thus given to the development of the modeling and solution methods for the proposed traffic assignment problem. In this modeling paradigm, given that trip chains are the basic modeling unit for individual decision making, any traveler’s combined travel route and activity location choices under the distance limit results in a distance-constrained, node-sequenced shortest path problem. A cascading labeling algorithm is developed for this shortest path problem and embedded into a linear approximation framework for equilibrium network solutions. The numerical result derived from an illustrative example clearly shows the mechanism and magnitude of the distance limit and trip chain settings in reshaping network flows from the simple case characterized merely by user equilibrium.  相似文献   
68.
Model-based traffic prediction systems (mbTPS) are a central component of the decision support and ICM (integrated corridor management) systems currently used in several large urban traffic management centers. These models are intended to generate real-time predictions of the system’s response to candidate operational interventions. They must therefore be kept calibrated and trustworthy. The methodologies currently available for tracking the validity of a mbTPS have been adapted from approaches originally designed for off-line operational planning models. These approaches are insensitive to the complexity of the network and to the amount and quality of the data available. They also require significant human intervention and are therefore not suitable for real-time monitoring. This paper outlines a set of criteria for designing tests that are appropriate for the mbTPS task. It also proposes a test that meets the criteria. The test compares the predictions of the mbTPS in question to those of a model-less alternative. A t-test is used to determine whether the predictions of the mbTPS are superior to those of the model-less predictor. The approach is applied to two different systems using data from the I-210 freeway in Southern California.  相似文献   
69.
Accurately modeling traffic speeds is a fundamental part of efficient intelligent transportation systems. Nowadays, with the widespread deployment of GPS-enabled devices, it has become possible to crowdsource the collection of speed information to road users (e.g. through mobile applications or dedicated in-vehicle devices). Despite its rather wide spatial coverage, crowdsourced speed data also brings very important challenges, such as the highly variable measurement noise in the data due to a variety of driving behaviors and sample sizes. When not properly accounted for, this noise can severely compromise any application that relies on accurate traffic data. In this article, we propose the use of heteroscedastic Gaussian processes (HGP) to model the time-varying uncertainty in large-scale crowdsourced traffic data. Furthermore, we develop a HGP conditioned on sample size and traffic regime (SSRC-HGP), which makes use of sample size information (probe vehicles per minute) as well as previous observed speeds, in order to more accurately model the uncertainty in observed speeds. Using 6 months of crowdsourced traffic data from Copenhagen, we empirically show that the proposed heteroscedastic models produce significantly better predictive distributions when compared to current state-of-the-art methods for both speed imputation and short-term forecasting tasks.  相似文献   
70.
Building safe and effective roundabouts requires optimizing traffic (operational) efficiency (TE) and traffic safety (TS) while taking into account geometric factors, traffic characteristics and local constraints. Most existing simulation-based optimization models do not simultaneously optimize all these factors. To capture the relationship among geometry, efficiency and safety, we put forward a model formulation in this paper. We present a new multi-criteria and simultaneous multi-objective optimization (MOO) model approach to optimize geometry, TE and TS of urban unsignalized single-lane roundabouts. To the best of our knowledge, this is the first model that uses the multi-criteria decision-making method known as analytic hierarchy process to evaluate and rank traffic parameters and geometric elements of urban single-lane roundabouts. The model was built based on comprehensive review of the research literature and existing roundabout simulation software, a field survey of 61 civil and traffic expert engineers in Croatia, and field studies of roundabouts in the Croatian capital city of Zagreb. We started from the basis of Kimber’s capacity model, HCM2010 serviceability model, and Maycock and Hall's accident prediction model, which we extended by adding sensitivity analysis and powerful MOO procedures of the bounded objective function method and interactive optimization. Preliminary validation of the model was achieved by identifying the optimal and most robust of three geometric alternatives (V.1-V.3) for an unsignalized single-lane roundabout in Zagreb, Croatia. The geometric parameters in variant V.1 had significantly higher values than in the existing design V.0, while approaches 1 and 3 in variant V.2 were enlarged as much as possible within allowed spatial limits and Croatian guidelines, reflecting their higher traffic demand. Sensitivity analysis indicated that variant V.2 showed the overall highest TE and TS across the entire range of traffic flow demand and pedestrian crossing flow demand at approaches. At the same time, the number of predicted traffic accidents was similar for all three variants, although it was lowest overall for V.2. The similarity in predicted accident frequency for the three variants suggests that V.2 provides the greatest safety within the predefined constraints and parameter ranges explored in our study. These preliminary results suggest that the proposed model can optimize geometry, TE and TS of urban single-lane roundabouts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号