首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   4篇
公路运输   61篇
综合类   55篇
水路运输   76篇
铁路运输   74篇
综合运输   55篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   13篇
  2019年   3篇
  2018年   10篇
  2017年   9篇
  2016年   8篇
  2015年   13篇
  2014年   22篇
  2013年   19篇
  2012年   26篇
  2011年   14篇
  2010年   8篇
  2009年   15篇
  2008年   15篇
  2007年   32篇
  2006年   29篇
  2005年   23篇
  2004年   18篇
  2003年   8篇
  2002年   2篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1994年   1篇
排序方式: 共有321条查询结果,搜索用时 31 毫秒
271.
A key limitation when accommodating the continuing air traffic growth is the fixed airspace structure including sector boundaries. The geometry of sectors has stayed relatively constant despite the fact that route structures and demand have changed dramatically over the past decade. Dynamic Airspace Sectorization is a concept where the airspace is redesigned dynamically to accommodate changing traffic demands. Various methods have been proposed to dynamically partition the airspace to accommodate the traffic growth while satisfying other sector constraints and efficiency metrics. However, these approaches suffer from several operational drawbacks, and their computational complexity increases fast as the airspace size and traffic volume increase. In this paper, we evaluate and identify the gaps in existing 3D sectorization methods, and propose an improved Agent Based Model (iABM) to address these gaps. We also propose three additional models using KD-Tree, Bisection and Voronoi Diagrams in 3D, to partition the airspace to satisfy the convexity constraint and reduce computational cost. We then augment these methods with a multi-objective optimization approach that uses four objectives: minimizing the variance of controller workload across the sectors, maximizing the average sector flight time, and minimizing the distance between sector boundaries and the traffic flow crossing points. Experimental results show that iABM has the best performance on workload balancing, but it is restrictive when it comes to the convexity constraint. Bisection- and Voronoi Diagram-based models perform worse than iABM on workload balancing but better on average sector flight time, and they can satisfy the convexity constraint. The KD-tree-based model has a lower computational cost, but with a poor performance on the given objectives.  相似文献   
272.
曾凡权  饶鑫  薛鸿祥 《船舶工程》2020,42(1):116-121
随着半潜式平台的大型化发展,平台生活楼开始参与平台总体变形,在角隅等不连续位置易产生应力集中现象,从而影响平台结构安全。为改善生活楼与主平台甲板连接角隅处的应力集中问题,本文分析了影响生活楼与甲板连接区域危险的波浪工况及应力水平;在应力集中区域,设置连接肘板,并对肘板的尺寸和形状进行参数化建模,基于领域培植遗传算法进行多目标优化求解,分析不同权重比下的优化结果;结合规范要求的典型设计波工况,对优化后的肘板在不同工况下的应力集中改善效果进行评价。本文的相关的优化流程和分析方法可为海洋平台局部结构的优化设计提供一定的参考  相似文献   
273.
The current state-of-practice for predicting travel times assumes that the speeds along the various roadway segments remain constant over the duration of the trip. This approach produces large prediction errors, especially when the segment speeds vary temporally. In this paper, we develop a data clustering and genetic programming approach for modeling and predicting the expected, lower, and upper bounds of dynamic travel times along freeways. The models obtained from the genetic programming approach are algebraic expressions that provide insights into the spatiotemporal interactions. The use of an algebraic equation also means that the approach is computationally efficient and suitable for real-time applications. Our algorithm is tested on a 37-mile freeway section encompassing several bottlenecks. The prediction error is demonstrated to be significantly lower than that produced by the instantaneous algorithm and the historical average averaged over seven weekdays (p-value <0.0001). Specifically, the proposed algorithm achieves more than a 25% and 76% reduction in the prediction error over the instantaneous and historical average, respectively on congested days. When bagging is used in addition to the genetic programming, the results show that the mean width of the travel time interval is less than 5 min for the 60–80 min trip.  相似文献   
274.
Transit network timetabling aims at determining the departure time of each trip of all lines in order to facilitate passengers transferring either to or from a bus. In this paper, we consider a bus timetabling problem with stochastic travel times (BTP-STT). Slack time is added into timetable to mitigate the randomness in bus travel times. We then develop a stochastic integer programming model for the BTP-STT to minimize the total waiting time cost for three types of passengers (i.e., transferring passengers, boarding passengers and through passengers). The mathematical properties of the model are characterized. Due to its computational complexity, a genetic algorithm with local search (GALS) is designed to solve our proposed model (OPM). The numerical results based on a small bus network show that the timetable obtained from OPM reduces the total waiting time cost by an average of 9.5%, when it is tested in different scenarios. OPM is relatively effective if the ratio of the number of through passengers to the number of transferring passengers is not larger than a threshold (e.g., 10 in our case). In addition, we test different scale instances randomly generated in a practical setting to further verify the effectiveness of OPM and GALS. We also find that adding slack time into timetable greatly benefits transferring passengers by reducing the rate of transferring failure.  相似文献   
275.
With increasing land transportation requirements in both urban and rural areas, roads are encroaching ever more on animal habitats, where collisions with vehicles are a leading contributor to wildlife mortality. While road designers recognise the importance of accounting for such impacts at the design level, existing approaches simply either ignore viable habitat or avoid such regions entirely. Respectively, this can result in road alignments that are overly damaging to vulnerable species or prohibitively expensive to build and operate. The research presented in this paper investigates the effects of explicitly accounting for animal mortality on the design of a road through an ecologically sensitive area. The model presented achieves this by incorporating a spatially-explicit animal migration and road mortality model into an accepted optimal road alignment algorithm to propose low-cost roads that maintain the animal population above a minimum threshold by the end of a specified design horizon. The new method was applied to an example scenario to demonstrate the effect of setting a minimum required animal population on the road design. This model was able to consistently produce a road that met a minimum required species conservation benefit. This reflected a major improvement over the model that ignored animal habitats while only requiring a minor increase in construction and operating costs compared to the model that avoids habitat.  相似文献   
276.
Abstract

This article proposes new models for estimating transport demand using a genetic algorithm (GA) approach. Based on population, gross national product and number of vehicles, four forms of the genetic algorithm transport planning (GATP) model are developed – one exponential and the others taking quadratic forms – and applied to Turkey. The best fit models in terms of minimum total average relative errors in the test period are selected for future estimation. Demand management strategies are proposed based on three scenarios: restricting private car use, restricting truck use and the simultaneous management of private car use and goods movement. Results show that the GATP model may be used to estimate transport demand in terms of passenger-kilometers traveled (pass-km), vehicle-kilometers traveled (veh-km) and ton-kilometers completed (ton-km). Results also show that the third scenario – simultaneous restrictions on private car use and goods movement – could reduce total veh-km by about 35% by 2025 in this study of Turkish rural roads.  相似文献   
277.
提出一种基于实数编码的遗传算法的地基基础沉降预测方法。根据施工中地基基础沉降的观测资料,对以后地基基础沉降值做出预报。计算实例表明,用该方法进行地基基础沉降预报有较高的精度,而且对基础上部荷载有变化的情况也能做出较精确的预报,可以应用到实际工程中。  相似文献   
278.
姜帅 《中国水运》2007,7(6):149-151
类多边形顶点算法是目前解决二维不规则图形排样的一种主流方法,应用较广泛。本文在基于顶点算法的理论基础之上,对于该方法在解决含有曲线轮廓的工件排样的不足的问题上,借鉴碰撞算法中碰撞点的提取理论,提出一种可行的完善方案。  相似文献   
279.
Relatively long term time series of satellite data are nowadays available. These spatio–temporal time series of satellite observations can be employed to build empirical models, called satellite based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. The forecast skill of SOFT systems predicting the sea surface temperature (SST) at sub-basin spatial scale (from hundreds to thousand kilometres), has been extensively explored in previous works. Thus, these works were mostly focussed on predicting large scale patterns spatially stationary. At spatial scales smaller than sub-basin (from tens to hundred kilometres), spatio–temporal variability is more complex and propagating structures are frequently present. In this case, traditional SOFT systems based on Empirical Orthogonal Function (EOF) decompositions could not be optimal prediction systems. Instead, SOFT systems based on Complex Empirical Orthogonal Functions (CEOFs) are, a priori, better candidates to resolve these cases.In this work we study and compare the performance of an EOF and CEOF based SOFT systems forecasting the SST at weekly time scales of a propagating mesoscale structure. The SOFT system was implemented in an area of the Northern Balearic Sea (Western Mediterranean Sea) where a moving frontal structure is recurrently observed. Predictions from both SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the implemented SOFT systems are superior in terms of predictability to persistence. No substantial differences have been found between the EOF and CEOF-SOFT systems.  相似文献   
280.
本文采用遗传算法,以汽车的动力性和燃油经济性最优为目标,同时考虑一定的约束条件,对汽车的传动系参数进行优化,并通过仿真进行验证。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号