首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
公路运输   12篇
综合类   6篇
水路运输   11篇
铁路运输   7篇
综合运输   23篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2008年   2篇
  2007年   8篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
51.
In this paper, we propose a novel approach to model route choice behaviour in a tolled road network with a bi-objective approach, assuming that all users have two objectives: (1) minimise travel time; and (2) minimise toll cost. We assume further that users have different preferences in the sense that for any given path with a specific toll, there is a limit on the time that an individual would be willing to spend. Different users can have different preferences represented by this indifference curve between toll and time. Time surplus is defined as the maximum time minus the actual time. Given a set of paths, the one with the highest (or least negative) time surplus will be the preferred path for the individual. This will result in a bi-objective equilibrium solution satisfying the time surplus maximisation bi-objective user equilibrium (TSmaxBUE) condition. That is, for each O–D pair, all individuals are travelling on the path with the highest time surplus value among all the efficient paths between this O–D pair.We show that the TSmaxBUE condition is a proper generalisation of user equilibrium with generalised cost function, and that it is equivalent to bi-objective user equilibrium. We also present a multi-user class version of the TSmaxBUE condition and demonstrate our concepts with illustrative examples.  相似文献   
52.
Unexpected disruptions occur for many reasons in railway networks and cause delays, cancelations, and, eventually, passenger inconvenience. This research focuses on the railway timetable rescheduling problem from a macroscopic point of view in case of large disruptions. The originality of our approach is to integrate three objectives to generate a disposition timetable: the passenger satisfaction, the operational costs and the deviation from the undisrupted timetable. We formulate the problem as an Integer Linear Program that optimizes the first objective and includes ε-constraints for the two other ones. By solving the problem for different values of ε, the three-dimensional Pareto frontier can be explored to understand the trade-offs among the three objectives. The model includes measures such as canceling, delaying or rerouting the trains of the undisrupted timetable, as well as scheduling emergency trains. Furthermore, passenger flows are adapted dynamically to the new timetable. Computational experiments are performed on a realistic case study based on a heavily used part of the Dutch railway network. The model is able to find optimal solutions in reasonable computational times. The results provide evidence that adopting a demand-oriented approach for the management of disruptions not only is possible, but may lead to significant improvement in passenger satisfaction, associated with a low operational cost of the disposition timetable.  相似文献   
53.
A key limitation when accommodating the continuing air traffic growth is the fixed airspace structure including sector boundaries. The geometry of sectors has stayed relatively constant despite the fact that route structures and demand have changed dramatically over the past decade. Dynamic Airspace Sectorization is a concept where the airspace is redesigned dynamically to accommodate changing traffic demands. Various methods have been proposed to dynamically partition the airspace to accommodate the traffic growth while satisfying other sector constraints and efficiency metrics. However, these approaches suffer from several operational drawbacks, and their computational complexity increases fast as the airspace size and traffic volume increase. In this paper, we evaluate and identify the gaps in existing 3D sectorization methods, and propose an improved Agent Based Model (iABM) to address these gaps. We also propose three additional models using KD-Tree, Bisection and Voronoi Diagrams in 3D, to partition the airspace to satisfy the convexity constraint and reduce computational cost. We then augment these methods with a multi-objective optimization approach that uses four objectives: minimizing the variance of controller workload across the sectors, maximizing the average sector flight time, and minimizing the distance between sector boundaries and the traffic flow crossing points. Experimental results show that iABM has the best performance on workload balancing, but it is restrictive when it comes to the convexity constraint. Bisection- and Voronoi Diagram-based models perform worse than iABM on workload balancing but better on average sector flight time, and they can satisfy the convexity constraint. The KD-tree-based model has a lower computational cost, but with a poor performance on the given objectives.  相似文献   
54.
Isight平台是集成、自动化和优化设计过程的通用软件框架,广泛应用于产品结构设计和优化工作中。文章不仅对其理论和方法进行了详细的描述,而且给出了一个工业实例,以说明该平台的应用。结果表明,Isight平台能够集成多种类型的软件,并基于其数据集成和数据处理等能力实现自动分析,与传统的产品设计和优化方法相比具有更大的优势。此外,文章对同类研究问题也具有一定的指导意义和参考价值。  相似文献   
55.
再论线性多目标规划有效解的有效率   总被引:2,自引:0,他引:2  
对文(1)中的优势集进行重新定义,讨论了非劣极点优势集的性质,在此基础上修正了文(1)中有效率的定义。  相似文献   
56.
Traffic congestion in urban network has been a serious problem for decades. In this paper, a novel dynamic multi-objective optimization method for designing predictive controls of network signals is proposed. The popular cell transmission model (CTM) is used for traffic prediction. Two network models are considered, i.e., simple network which captures basic macroscopic traffic characteristics and advanced network that further considers vehicle turning and different traveling routes between origins and destinations. A network signal predictive control algorithm is developed for online multi-objective optimization. A variety of objectives are considered such as system throughput, vehicle delay, intersection crossing volume, and spillbacks. The genetic algorithm (GA) is applied to solve the optimization problem. Three example networks with different complexities are studied. It is observed that the optimal traffic performance can be achieved by the dynamic control in different situations. The influence of the objective selection on short-term and long-term network benefits is studied. With the help of parallel computing, the proposed method can be implemented in real time and is promising to improve the performance of real traffic network.  相似文献   
57.
以离散变量优化法、多目标优化法为基础,在OptiStruct软件中对橡胶金属环参数进行优化设计;结合优化理论及优化软件,制定出适用于联轴器这类大型复杂装置的性能结构优化方法,不但能够精确计算得到装置参数的具体优化数值,还能据此进行装置各部件形状结构及尺寸的改进;没有数据转化及因此造成的信息丢失等失真情况,对于优化算法的结果应用于实际装备提高装备的各项性能具有重要意义,对改善系统动态性能,降低系统的振动噪声,为联轴器的科学设计提供理论和实验依据。  相似文献   
58.
59.
This paper presents a model and an algorithm for the design of a home-to-work bus service in a metropolitan area. This type of service must display an equilibrium between conflicting criteria such as efficiency, effectiveness, and equity. To this end, we introduce a multi-objective model in which, among other aspects, equity is considered by time windows on the arrival time of a bus at a stop. Time windows can have other uses such as, for example, guaranteeing synchronization of the service with other transportation modes. This is one of the guiding principles of the proposed model which is based on concepts that simultaneously tackle several issues at once. Along this line, we propose a cluster routing approach to model both bus stop location and routing in urban road networks where turn restrictions exist. The resulting multi-objective location-routing model is solved by a tabu search algorithm. As an application, we analyze a home-to-work bus service for a large research center located in Rome, Italy. This case study provides a benchmark for the algorithmic results, and shows the practical relevance of the proposed methodology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号