全文获取类型
收费全文 | 7896篇 |
免费 | 551篇 |
专业分类
公路运输 | 2450篇 |
综合类 | 1929篇 |
水路运输 | 2438篇 |
铁路运输 | 1308篇 |
综合运输 | 322篇 |
出版年
2024年 | 43篇 |
2023年 | 73篇 |
2022年 | 225篇 |
2021年 | 292篇 |
2020年 | 339篇 |
2019年 | 256篇 |
2018年 | 200篇 |
2017年 | 268篇 |
2016年 | 276篇 |
2015年 | 387篇 |
2014年 | 602篇 |
2013年 | 443篇 |
2012年 | 739篇 |
2011年 | 782篇 |
2010年 | 521篇 |
2009年 | 500篇 |
2008年 | 462篇 |
2007年 | 544篇 |
2006年 | 477篇 |
2005年 | 300篇 |
2004年 | 183篇 |
2003年 | 122篇 |
2002年 | 99篇 |
2001年 | 73篇 |
2000年 | 63篇 |
1999年 | 38篇 |
1998年 | 26篇 |
1997年 | 28篇 |
1996年 | 21篇 |
1995年 | 13篇 |
1994年 | 14篇 |
1993年 | 9篇 |
1992年 | 7篇 |
1991年 | 6篇 |
1990年 | 5篇 |
1989年 | 7篇 |
1988年 | 2篇 |
1984年 | 2篇 |
排序方式: 共有8447条查询结果,搜索用时 15 毫秒
131.
海洋结构物的疲劳寿命预报是当前的研究热点,文章根据第二作者率领的课题组提出的海洋结构物疲劳寿命预报统一方法比较了疲劳裂纹扩展模拟的三种数值积分方法:逐周数值积分法、△N积分法和△a积分法,并分析了每种方法的适用条件。随后,以中心表面裂纹承受单向交变拉伸载荷的平板为例,分别运用三种方法计算了裂纹扩展寿命和最终裂纹尺寸。同时,研究了△N和△a取值不同对结果的影响。最后,综合考虑计算耗时和计算结果精度,给出了△N积分法和△a积分法的建议值,即△N/N≤1.0%,△a≤0.1 mm。 相似文献
132.
船舶大型化、靠泊作业频繁、管理漏洞以及某些不可抗力因素造成异常靠泊事故时有发生。目前,码头在异常靠泊情况下的受力及位移特性尚不明确,损伤评估缺乏理论基础,为使现场检测更有针对性,利用ANSYS有限元结构分析软件建立了受损码头的数学模型,考虑了桩土间相互作用及橡胶护舷对碰撞的缓冲作用。将模型碰撞损伤结果与码头实际受损情况进行对比,简要分析了碰撞中部分结构受力极值的相对关系和位移情况。结果表明:在该碰撞实例条件下,模型运行基本可反映异常靠泊发生时高桩码头结构损伤情况。 相似文献
133.
为实现对全回转桨船操纵性的预报,根据船舶分离型运动模型的建模方法,考虑全回转桨在水平面上周转的灵活性与受力的特殊性,着重分析双桨受力,建立适用于全回转对转桨船模的MMG操纵运动数学模型;模拟船模进行PMM运动,求得水动力导数并采用四阶龙格-库塔法对操纵性常微分方程进行求解;对某工程船在静水中的回转运动和Z形操纵运动进行数值仿真预报,并将预报结果与自航模操纵性试验结果进行对比。结果表明,两者吻合度较高,验证了针对全回转对转桨船模所建立的船舶运动数学模型的有效性,可为全回转桨船的操纵性预报提供一种较为可靠且行之有效的方法。 相似文献
134.
135.
136.
Railway rapid transit systems are key stones for the sustainability of mass transit in developed countries. The overwhelming majority of these railway systems are direct-current (DC) electrified and several energy-saving techniques have been proposed in the literature for these systems. The use of regenerative-braking in trains is generally recognised as the main tool to improve the efficiency of DC-electrified mass transit railway systems but the energy recovered in braking cannot always be handled efficiently, above all in low traffic-density situations. Several emerging technologies as energy storage systems or reversible traction substations have the potential for making it possible to efficiently use train-braking. However, a systematic evaluation of their effect is missing in the literature.In this paper, a deep, rigorous and comprehensive study on the factors which affect energy issues in a DC-electrified mass transit railway system is carried out. This study clarifies what the actual potential is for energy saving in each situation. Then, a methodology to asses several energy-saving techniques to improve energy efficiency in DC-electrified mass transit systems is presented, constituting the main contribution of this paper. This methodology has been conceived to help operators in assessing the effect of railway-infrastructure emerging technologies in transit systems, so making it possible to shape planning, capacity, etc. It is stepped out in three basic movements. First of all, a traffic-density scan analysis is conducted in order to clarify the effect of the headway on system behaviour. Secondly, several traffic-density scenarios are simulated for a set of infrastructure-expanded cases. Finally, annual energy saving is evaluated by applying a realistic operation timetable. This methodology has been applied to a case study in Madrid Metro (Spain) to illustrate the steps of its application and the effect of several energy-saving techniques on this specific system. Results confirm that regenerative braking generally leads to an important increase of system energy efficiency – especially at high traffic-density scenarios. It has also been proved that infrastructure improvements can also contribute to energy savings and their contributions are more significant at low traffic densities. Annual energy results have been obtained, which may lead to investment decisions by carrying out an appropriate economic assessment based on cost analysis.The main results of the study presented here are likely to apply to other electric traction systems, at least qualitatively. 相似文献
137.
138.
139.
With trajectory data, a complete microscopic and macroscopic picture of traffic flow operations can be obtained. However, trajectory data are difficult to observe over large spatiotemporal regions—particularly in urban contexts—due to practical, technical and financial constraints. The next best thing is to estimate plausible trajectories from whatever data are available. This paper presents a generic data assimilation framework to reconstruct such plausible trajectories on signalized urban arterials using microscopic traffic flow models and data from loops (individual vehicle passages and thus vehicle counts); traffic control data; and (sparse) travel time measurements from whatever source available. The key problem we address is that loops suffer from miss- and over-counts, which result in unbounded errors in vehicle accumulations, rendering trajectory reconstruction highly problematic. Our framework solves this problem in two ways. First, we correct the systematic error in vehicle accumulation by fusing the counts with sparsely available travel times. Second, the proposed framework uses particle filtering and an innovative hierarchical resampling scheme, which effectively integrates over the remaining error distribution, resulting in plausible trajectories. The proposed data assimilation framework is tested and validated using simulated data. Experiments and an extensive sensitivity analysis show that the proposed method is robust to errors both in the model and in the measurements, and provides good estimations for vehicle accumulation and vehicle trajectories with moderate sensor quality. The framework does not impose restrictions on the type of microscopic models used and can be naturally extended to include and estimate additional trajectory attributes such as destination and path, given data are available for assimilation. 相似文献
140.
The speed control effect of highway tunnel sidewall markings based on color and temporal frequency 下载免费PDF全文
The low‐luminance monotonous environment in the middle section of highway tunnels offers few reference points and is prone to cause severe visual illusion. Thus, drivers tend to underestimate their driving speed, which can induce speeding behaviors that result in rear‐end collisions. Therefore, discovering low‐cost methods of traffic engineering that reduce this visual illusion and ensure a steady driving speed is an important challenge for current highway tunnel operations. This study analyzes the effects of sidewall markings in typical highway tunnels, specifically observing how their colors and temporal frequencies affect the driver's speed perception in a low‐luminance condition. A three‐dimensional model of the middle section of highway tunnels was built in a driving simulator. Psychophysical tests of speed perception were carried out by the method of limits. The precision of the simulation model was then checked by comparing the results to field test data. The simulation tests studied the stimulus of subjectively equal speed and reaction time in relation to sidewall markings in different colors (red–white combined, yellow–white combined, and blue–white combined). Furthermore, based on the optimal color, the effects of sidewall marking with different temporal frequencies (0.4, 0.8, 1.2, 2, 4, 8, 12, 16, and 32 Hz) on the speed perception of drivers were also analyzed. The test results reveal that the color and temporal frequency of sidewall marking have a significant impact on the driver's stimulus of subjectively equal speed and reaction time. The subjects have the highest speed overestimation and an easy speed judgment with the red–white combined sidewall marking. Within the temporal frequency range of 4.45–7.01 Hz, the subjects have a certain degree of speed overestimation (less than 20%), and the speed perception is sensitive to the temporal frequency changes. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献