全文获取类型
收费全文 | 11258篇 |
免费 | 213篇 |
专业分类
公路运输 | 4075篇 |
综合类 | 3287篇 |
水路运输 | 955篇 |
铁路运输 | 2611篇 |
综合运输 | 543篇 |
出版年
2024年 | 104篇 |
2023年 | 313篇 |
2022年 | 403篇 |
2021年 | 533篇 |
2020年 | 258篇 |
2019年 | 249篇 |
2018年 | 87篇 |
2017年 | 212篇 |
2016年 | 246篇 |
2015年 | 478篇 |
2014年 | 685篇 |
2013年 | 611篇 |
2012年 | 495篇 |
2011年 | 537篇 |
2010年 | 571篇 |
2009年 | 631篇 |
2008年 | 579篇 |
2007年 | 495篇 |
2006年 | 408篇 |
2005年 | 430篇 |
2004年 | 436篇 |
2003年 | 451篇 |
2002年 | 368篇 |
2001年 | 380篇 |
2000年 | 268篇 |
1999年 | 218篇 |
1998年 | 171篇 |
1997年 | 130篇 |
1996年 | 140篇 |
1995年 | 114篇 |
1994年 | 108篇 |
1993年 | 86篇 |
1992年 | 84篇 |
1991年 | 83篇 |
1990年 | 58篇 |
1989年 | 42篇 |
1988年 | 2篇 |
1965年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
佛山市南庄大道东延线工程主桥跨越东平水道,是一座跨径65 m+75 m+268 m的单塔双索面斜拉桥,主梁采用预应力混凝土梁与钢结构箱梁组成的混合梁体系,结构构造及受力情况复杂。详细介绍了该桥的设计情况。 相似文献
963.
964.
以聊城中华路大桥为例,采用midas总体计算和ANSYS细部分析的有限元联合分析方法对独塔混合梁斜拉桥的钢—UHPC结合段的受力开展了研究。首先采用midas civil分析软件建立全桥的总体杆系模型,以获得钢—混结合段控制截面在各种不利工况下的内力;然后在ANSYS中建立了结合段板壳—实体有限元精细化模型,将提取的内力施加于局部模型,计算得到钢—混结合段细部应力。通过受力分析发现,独塔斜拉桥采用钢—混结合段后,充分发挥了混凝土抗压和钢结构抗拉的材料优点,构造受力合理,实现了材料和结构刚度的平顺过渡,是一种合理的方案选择。通过细部应力分析发现,在钢格室与承压板连接处以及顶底板折角、腹板折角与填充混凝土的接触面处,易产生较大的应力集中,应对这些部位进行局部加劲或采用平滑倒角的方式加以避免。对结合段中腹板的厚度与承压板厚度的参数敏感性分析结果表明,增加中腹板厚度可适当降低中腹板的应力,但不能降低其他钢结构的高应力水平;而增加承压板的厚度可以显著降低钢结构的高应力水平。 相似文献
965.
为研究桥墩高度对高烈度区连续梁桥抗震体系的影响,确定不同抗震体系的墩高适用范围,以黄茅海西引桥60 m连续梁桥为工程背景,进行了不同墩高下的约束体系对比分析,并在中间墩墩梁固结体系的基础上进一步分析了过渡墩约束体系对地震响应的影响。结果表明,当墩高较低时,减隔震体系地震响应明显小于墩梁固结体系,减隔震体系优势较大;随着墩高的增加,桥墩刚度减小,桥梁的自振周期增加,墩梁固结体系的地震响应逐渐减小,减隔震体系的优势减小。因此,建议墩高相对较矮时采用减隔震体系,墩高较高时采用墩梁固结体系。由于过渡墩设置减隔震支座可明显减小横向地震作用下结构内力,且不会大幅增加纵向地震响应,因此采用中间墩墩梁固结体系时,仍然可以考虑在过渡墩位置设置摩擦摆减隔震支座进行减隔震设计。 相似文献
966.
针对目前依据单根斜拉索索力值变化评估斜拉桥运营健康状态的不足,提出一种基于群索索力域映射斜拉桥性能状况的方法。该方法基于蒙特卡罗法模拟获得斜拉桥群索索力域,在实测索力与群索索力域间做相异度最小寻值,根据桥梁结构不同的极限状态定义评估阈值。以国内某已建24年的大跨径预应力混凝土斜拉桥为工程实例,基于近6年(2013~2018年)实测索力数据,依照提出的新评估方法与传统评估方法对主梁结构性能状态进行评估。结果表明:传统评估方法仅得出2013年单根索力变化幅值超限的结论;新评估方法得出2013年、2018年主梁跨中截面存在消压风险,需要持续跟踪关注。该方法可定量、直观地分析评估群索索力变化对桥梁结构受力状况的影响,为桥梁的科学管养决策提供依据。 相似文献
967.
厦漳同城大道沙洲岛特大桥西溪主桥采用(88+200) m扭背索独塔斜拉桥,塔墩梁固结体系。主梁采用钢-混混合梁,其中主跨为整幅钢箱梁,梁宽47 m;边跨为预应力混凝土箱梁,梁宽51 m;钢-混结合面位于主跨距桥塔理论跨径线15 m处。桥塔采用独柱式钢筋混凝土斜塔,总高134.6 m,桥塔向边跨倾斜8°,其下布置整体式承台,钻孔桩群桩基础。斜拉索采用标准抗拉强度1 670 MPa平行钢丝拉索,边跨斜拉索为双索面空间扭背索,主跨斜拉索为准单索面。针对超宽桥面,采用空间梁格法分析剪力滞的影响,将混凝土梁纵腹板由6道增至8道。按3 m顺桥向标准间距设置钢箱梁实体式横隔板,可使该桥宽幅主梁偏载、扭转效应导致的应力增量控制在允许范围内。对塔墩梁结合部进行有限元精细化分析,针对应力集中情况,优化局部构造和配筋设计,经计算,优化后结构受力满足设计要求。 相似文献
968.
某铁路黄河特大桥为24×48 m上承式钢桁梁桥,建于1969年,因长期服役,梁体安全储备下降,现采用明桥面钢箱梁替换既有钢桁梁.换梁施工采用拖拉法,设置拼装支架、拖拉反力支架、跨线龙门吊等大型临时设施,分别完成钢箱梁拼装、既有钢桁梁拆除及钢箱梁提升上桥;利用PLC同步控制系统和大吨位拖拉牵引系统进行梁体单点单向整体纵向... 相似文献
969.
970.
《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362-2018)基于应力扰动区(D区)刚性拉压杆模型给出了短悬臂盖梁承载能力极限状态的计算方法,但对于正常使用极限状态抗裂验算未进行规定。如果按刚性拉压杆模型进行抗裂验算,则拉杆钢筋的应力往往偏大,配筋将过于保守。实际上拉杆和压杆刚度相差较大,按有限变位的柔性拉压杆模型推导了拉杆拉力的计算公式,并结合工程实例采取有限元实体模型进行验证,结果表明柔性拉压杆模型计算结果精度更高,与有限元分析结果更吻合,相关结论可供类似工程参考。 相似文献