首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   10篇
公路运输   217篇
综合类   312篇
水路运输   74篇
铁路运输   90篇
综合运输   441篇
  2022年   6篇
  2021年   17篇
  2020年   9篇
  2019年   5篇
  2018年   55篇
  2017年   41篇
  2016年   53篇
  2015年   69篇
  2014年   78篇
  2013年   84篇
  2012年   60篇
  2011年   103篇
  2010年   41篇
  2009年   56篇
  2008年   65篇
  2007年   120篇
  2006年   100篇
  2005年   78篇
  2004年   40篇
  2003年   17篇
  2002年   10篇
  2001年   16篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
排序方式: 共有1134条查询结果,搜索用时 171 毫秒
931.
Vehicle flow forecasting is of crucial importance for the management of road traffic in complex urban networks, as well as a useful input for route planning algorithms. In general traffic predictive models rely on data gathered by different types of sensors placed on roads, which occasionally produce faulty readings due to several causes, such as malfunctioning hardware or transmission errors. Filling in those gaps is relevant for constructing accurate forecasting models, a task which is engaged by diverse strategies, from a simple null value imputation to complex spatio-temporal context imputation models. This work elaborates on two machine learning approaches to update missing data with no gap length restrictions: a spatial context sensing model based on the information provided by surrounding sensors, and an automated clustering analysis tool that seeks optimal pattern clusters in order to impute values. Their performance is assessed and compared to other common techniques and different missing data generation models over real data captured from the city of Madrid (Spain). The newly presented methods are found to be fairly superior when portions of missing data are large or very abundant, as occurs in most practical cases.  相似文献   
932.
Weaving sections, where a merge and a diverge are in close proximity, are considered as crucial bottlenecks in the highway network. Lane changes happen frequently in such sections, leading to a reduced capacity and the traffic phenomenon known as capacity drop. This paper studies how the emerging automated vehicle technology can improve the operations and increase the capacity of weaving sections. We propose an efficient yet effective multiclass hybrid model that considers two aspects of this technology in scenarios with various penetration rates: (i) the potential to control the desired lane change decisions of automated vehicles, which is represented in a macroscopic manner as the distribution of lane change positions, and (ii) the lower reaction time associated with automated vehicles that can reduce headways and the required gaps for lane changing maneuvers. The proposed model is successfully calibrated and validated with empirical observations from conventional vehicles at a weaving section near the city of Basel, Switzerland. It is able to replicate traffic dynamics in weaving sections including the capacity drop. This model is then applied in a simulation-based optimization framework that searches for the optimal distribution of the desired lane change positions to maximize the capacity of weaving sections. Simulation results show that by optimizing the distribution of the desired lane change positions, the capacity of the studied weaving section can increase up to 15%. The results also indicate that if the reaction time is considered as well, there is an additional combined effect that can further increase the capacity. Overall, the results show the great potential of the automated vehicle technology for increasing the capacity of weaving sections.  相似文献   
933.
Traffic pollution is an increasing challenge for cities. Emissions such as nitrogen dioxides pose a major health threat to the city’s inhabitants. These emissions often accumulate to critical levels in local areas of the city. To react to these critical emission levels, cities start implementing dynamic traffic management systems (TMS). These systems dynamically redirect traffic flows away from critical areas. These measures impact the travel speeds within the city. This is of particular importance for parcel delivery companies. These companies deliver goods to customers in the city. To avoid long delivery times and higher costs, companies already adapt their routing with respect to changing traffic conditions. Still, a communication with the TMS may allow anticipatory planning to avoid potentially critical areas in the city. In this paper, we show how communication between TMS and delivery companies results in benefits for both parties. To exploit the provided information, we develop a dynamic routing policy anticipating potential future measures of the TMS. We analyze our algorithm in a comprehensive case study for the TMS of the city of Braunschweig, Germany, a city often used as reference for a typical European city layout. We show that for the delivery company, integrating the TMS’ information in their routing algorithms reduces the driving times significantly. For the TMS, providing the information results in less traffic in the polluted areas.  相似文献   
934.
ABSTRACT

To build a traffic safety feature model and to quantify accident influences caused by some traffic violation behaviors of drivers, an accident diagnostic decision-making model is established. For the purpose of diagnosing accident morphologies, rough set theory is applied and the influence of traffic factors of different accident morphologies is quantified through calculating the degree of attribute importance, selecting core traffic factors and adopting a C4.5 decision tree algorithm. In the paper, road traffic accident data from 2008 to 2013 in Anhui Province are used. Typical rules are selected, targeted strategy proposals are put forward, and then, a scientific and reasonable diagnostic basis is provided for the diagnosis of traffic safety risks and the prediction of potential traffic accidents.  相似文献   
935.
This paper presents analytical models that describe the safety of unstructured and layered en route airspace designs. Here, ‘unstructured airspace’ refers to airspace designs that offer operators complete freedom in path planning, whereas ‘layered airspace’ refers to airspace concepts that utilize heading-altitude rules to vertically separate cruising aircraft based on their travel directions. With a focus on the intrinsic safety provided by an airspace design, the models compute instantaneous conflict counts as a function of traffic demand and airspace design parameters, such as traffic separation requirements and the permitted heading range per flight level. While previous studies have focused primarily on conflicts between cruising aircraft, the models presented here also take into account conflicts involving climbing and descending traffic. Fast-time simulation experiments used to validate the modeling approach indicate that the models estimate instantaneous conflict counts with high accuracy for both airspace designs. The simulation results also show that climbing and descending traffic caused the majority of conflicts for layered airspaces with a narrow heading range per flight level, highlighting the importance of including all aircraft flight phases for a comprehensive safety analysis. Because such trends could be accurately predicted by the three-dimensional models derived here, these analytical models can be used as tools for airspace design applications as they provide a detailed understanding of the relationships between the parameters that influence the safety of unstructured and layered airspace designs.  相似文献   
936.
In this paper, we present a Smart In-Vehicle Decision Support System (SIV-DSS) to help making better stop/go decisions in the indecision zone as a vehicle is approaching a signalized intersection. Supported by the Vehicle-to-Infrastructure (V2I) communications, the system integrates and utilizes the information from both vehicle and intersection. The effective decision support models of SIV-DSS are realized with the probabilistic sequential decision making process with the capability of combining a variety of advantages gained from a set of decision rules, where each decision rule is responsible to specific situations for making right decisions even without complete information. The decision rules are either extracted from the existing parametric models of the indecision zone problem, or designed as novel ones based on physical models utilizing the integrated information containing the key inputs from vehicle motion, vehicle-driver characteristics, intersection geometry and topology, signal phase and timings, and the definitions of red-light running (RLR). In SIV-DSS, the generality is reached through physical models utilizing a large number of accurate physical parameters, and the heterogeneity is treated by including a few behavioral parameters in driver characteristics. The performance of SIV-DSS is evaluated with systematic simulation experiments. The results show that the system can not only ensure traffic safety by greatly reducing the RLR probability, but also improve mobility by significantly reducing unnecessary stops at the intersection. Finally, we briefly discuss some relevant aspects and implications for SIV-DSS in practical implementations.  相似文献   
937.
Short-term forecasting of traffic characteristics, such as traffic flow, speed, travel time, and queue length, has gained considerable attention from transportation researchers and practitioners over past three decades. While past studies primarily focused on traffic characteristics on freeways or urban arterials this study places particular emphasis on modeling the crossing time over one of the busiest US–Canada bridges, the Ambassador Bridge. Using a month-long volume data from Remote Traffic Microwave Sensors and a yearlong Global Positioning System data for crossing time two sets of ANN models are designed, trained, and validated to perform short-term predictions of (1) the volume of trucks crossing the Ambassador Bridge and (2) the time it takes for the trucks to cross the bridge from one side to the other. The prediction of crossing time is contingent on truck volume on the bridge and therefore separate ANN models were trained to predict the volume. A multilayer feedforward neural network with backpropagation approach was used to train the ANN models. Predicted crossing times from the ANNs have a high correlation with the observed values. Evaluation indicators further confirmed the high forecasting capability of the trained ANN models. The ANN models from this study could be used for short-term forecasting of crossing time that would support operations of ITS technologies.  相似文献   
938.
随着现阶段农村、城市经济的迅速发展,城郊结合部的道路交通在城市对外的干线运输及外围地区入城的集中运输中起着越来越重要的作用.城郊结合部是连接城市和外围的重要组成部分,兼有城市道路和公路的交通性质,其多条道路的结合常采用平面交叉的连接形式.通过对西安城郊结合部环形平交口设置现状的分析,从交通安全和通行能力的角度进行研究,分析其影响因素,并提出相应的措施.  相似文献   
939.
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics.  相似文献   
940.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号