首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   1篇
公路运输   29篇
综合类   20篇
水路运输   9篇
铁路运输   2篇
综合运输   249篇
  2022年   1篇
  2021年   3篇
  2020年   10篇
  2019年   3篇
  2018年   22篇
  2017年   25篇
  2016年   32篇
  2015年   31篇
  2014年   35篇
  2013年   23篇
  2012年   18篇
  2011年   20篇
  2010年   6篇
  2009年   12篇
  2008年   19篇
  2007年   22篇
  2006年   12篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
排序方式: 共有309条查询结果,搜索用时 78 毫秒
71.
Travel time is an important index for managers to evaluate the performance of transportation systems and an intuitive measure for travelers to choose routes and departure times. An important part of the literature focuses on predicting instantaneous travel time under recurrent traffic conditions to disseminate traffic information. However, accurate travel time prediction is important for assessing the effects of abnormal traffic conditions and helping travelers make reliable travel decisions under such conditions. This study proposes an online travel time prediction model with emphasis on capturing the effects of anomalies. The model divides a path into short links. A Functional Principal Component Analysis (FPCA) framework is adopted to forecast link travel times based on historical data and real-time measurements. Furthermore, a probabilistic nested delay operator is used to calculate path travel time distributions. To ensure that the algorithm is fast enough for online applications, parallel computation architecture is introduced to overcome the computational burden of the FPCA. Finally, a rolling horizon structure is applied to online travel time prediction. Empirical results for Guangzhou Airport Expressway indicate that the proposed method can capture an abrupt change in traffic state and provide a promising and reliable travel time prediction at both the link and path levels. In the case where the original FPCA is modified for parallelization, accuracy and computational effort are evaluated and compared with those of the sequential algorithm. The proposed algorithm is found to require only a piece rather than a large set of traffic incident records.  相似文献   
72.
A characteristic of low frequency probe vehicle data is that vehicles traverse multiple network components (e.g., links) between consecutive position samplings, creating challenges for (i) the allocation of the measured travel time to the traversed components, and (ii) the consistent estimation of component travel time distribution parameters. This paper shows that the solution to these problems depends on whether sampling is based on time (e.g., one report every minute) or space (e.g., one every 500 m). For the special case of segments with uniform space-mean speeds, explicit formulae are derived under both sampling principles for the likelihood of the measurements and the allocation of travel time. It is shown that time-based sampling is biased towards measurements where a disproportionally long time is spent on the last segment. Numerical experiments show that an incorrect likelihood formulation can lead to significantly biased parameter estimates depending on the shapes of the travel time distributions. The analysis reveals that the sampling protocol needs to be considered in travel time estimation using probe vehicle data.  相似文献   
73.
Estimates of road speeds have become commonplace and central to route planning, but few systems in production provide information about the reliability of the prediction. Probabilistic forecasts of travel time capture reliability and can be used for risk-averse routing, for reporting travel time reliability to a user, or as a component of fleet vehicle decision-support systems. Many of these uses (such as those for mapping services like Bing or Google Maps) require predictions for routes in the road network, at arbitrary times; the highest-volume source of data for this purpose is GPS data from mobile phones. We introduce a method (TRIP) to predict the probability distribution of travel time on an arbitrary route in a road network at an arbitrary time, using GPS data from mobile phones or other probe vehicles. TRIP captures weekly cycles in congestion levels, gives informed predictions for parts of the road network with little data, and is computationally efficient, even for very large road networks and datasets. We apply TRIP to predict travel time on the road network of the Seattle metropolitan region, based on large volumes of GPS data from Windows phones. TRIP provides improved interval predictions (forecast ranges for travel time) relative to Microsoft’s engine for travel time prediction as used in Bing Maps. It also provides deterministic predictions that are as accurate as Bing Maps predictions, despite using fewer explanatory variables, and differing from the observed travel times by only 10.1% on average over 35,190 test trips. To our knowledge TRIP is the first method to provide accurate predictions of travel time reliability for complete, large-scale road networks.  相似文献   
74.
道路时间费用预测模型研究   总被引:4,自引:0,他引:4  
时间费用是公路建设和公路养护投资效益分析所必须考虑的经济指标之一。旅行时间费用、车辆运营费用和道路事故费用三者一起构成了道路的用户费用。随着公路网水平的提高、社会的发展和人们生活水平的不断提高,时间费用将在用户费用中占有更大的比重。本文就时间和由此产生的费用及费用计算方法进行初步探讨。  相似文献   
75.
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.  相似文献   
76.
In order to plan for, and achieve, a sustainable and accessible transport system, research and policies alike recognize a need to implement and enhance alternative transport options in favor of the private car. Moreover, these sustainable alternatives need to offer sufficient levels of accessibility regardless of where people live or work. We present and discuss an approach for capturing and evaluating perceived accessibility, with the ability to differentiate between individuals. Levels of perceived accessibility are compared before and after a fictive car use restriction, and between residential areas, using data from 2711 residents of Malmö, Sweden. A main conclusion is that levels of perceived accessibility become significantly lower for car users when they are limited in their options for daily travel. The difference is more substantive for frequent car users, who already travel less by sustainable modes today. There are also significant differences in levels of perceived accessibility in the restricted scenario, depending on where individuals live. These novel findings may not come as a surprise, but they emphasize the importance of including and analyzing perceptions of car users when designing accessible and sustainable transport systems. The paper ends with a discussion on how to facilitate the transition from current transport systems to an inclusive and accessible system.  相似文献   
77.
This study proposes an approach to modeling the effects of daily roadway conditions on travel time variability using a finite mixture model based on the Gamma–Gamma (GG) distribution. The GG distribution is a compound distribution derived from the product of two Gamma random variates, which represent vehicle-to-vehicle and day-to-day variability, respectively. It provides a systematic way of investigating different variability dimensions reflected in travel time data. To identify the underlying distribution of each type of variability, this study first decomposes a mixture of Gamma–Gamma models into two separate Gamma mixture modeling problems and estimates the respective parameters using the Expectation–Maximization (EM) algorithm. The proposed methodology is demonstrated using simulated vehicle trajectories produced under daily scenarios constructed from historical weather and accident data. The parameter estimation results suggest that day-to-day variability exhibits clear heterogeneity under different weather conditions: clear versus rainy or snowy days, whereas the same weather conditions have little impact on vehicle-to-vehicle variability. Next, a two-component Gamma–Gamma mixture model is specified. The results of the distribution fitting show that the mixture model provides better fits to travel delay observations than the standard (one-component) Gamma–Gamma model. The proposed method, the application of the compound Gamma distribution combined with a mixture modeling approach, provides a powerful and flexible tool to capture not only different types of variability—vehicle-to-vehicle and day-to-day variability—but also the unobserved heterogeneity within these variability types, thereby allowing the modeling of the underlying distributions of individual travel delays across different days with varying roadway disruption levels in a more effective and systematic way.  相似文献   
78.
This paper explores the potential role of individual trip characteristics and social capital network variables in the choice of transport mode. A sample of around 100 individuals living or working in one suburb of Madrid (i.e. Las Rosas district of Madrid) participated in a smartphone short panel survey, entering travel data for an entire working week. A Mixed Logit model was estimated with this data to analyze shifts to metro as a consequence of the opening of two new stations in the area. Apart from classical explanatory variables, such as travel time and cost, gender, license and car ownership, the model incorporated two “social capital network” variables: participation in voluntary activities and receiving help for various tasks (i.e. child care, housekeeping, etc.). Both variables improved the capacity of the model to explain transport mode shifts. Further, our results confirm that the shift towards metro was higher in the case of people “helped” and lower for those participating in some voluntary activities.  相似文献   
79.
80.
This paper tests a group decision-making model to examine the school travel behavior of students 6–18 years old in the Minneapolis-St. Paul Metropolitan area. The school trip information of 1737 two-parent families with a student is extracted from Travel Behavior Inventory data collected by the Metropolitan Council between the Fall 2010 and Spring 2012. The model has four distinct characteristics including: (1) considering the student explicitly in the model, (2) allowing for bargaining or negotiation within households, (3) quantifying the intra-household interaction among family members, and (4) determining the decision weight function for household members. This framework also covers a household with three members, namely, a father, a mother, and a student, and unlike other studies it is not limited to dual-worker families. To test the hypotheses we build two models, each with and without the group-decision approach. The models are separately built for different age groups, namely students 6–12 and 12–18 years old. This study considers a wide range of variables such as work status of parents, age and gender of students, mode of travel, and distance to school. The findings of this study demonstrate that the elasticities of the two modeling approaches differ not only in the value, but in the sign in some cases. In 63% of the cases the unitary household model underestimates the results. More precisely, the elasticities of the unitary household model are as much as 2 times more than that of the group-decision model in 20% of cases. This is a direct consequence of model misspecification that misleads both long- and short-term policies where the intra-household bargaining and interaction is overlooked in travel behavior models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号