首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   38篇
公路运输   90篇
综合类   254篇
水路运输   46篇
铁路运输   33篇
综合运输   136篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   9篇
  2020年   10篇
  2019年   9篇
  2018年   21篇
  2017年   20篇
  2016年   25篇
  2015年   34篇
  2014年   35篇
  2013年   41篇
  2012年   40篇
  2011年   53篇
  2010年   32篇
  2009年   38篇
  2008年   25篇
  2007年   34篇
  2006年   42篇
  2005年   17篇
  2004年   19篇
  2003年   9篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
121.
Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority’s point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the flow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the importance of the number and locations of shelter sites and the trade-off between efficiency and fairness.  相似文献   
122.
A new convex optimization framework is developed for the route flow estimation problem from the fusion of vehicle count and cellular network data. The issue of highly underdetermined link flow based methods in transportation networks is investigated, then solved using the proposed concept of cellpaths for cellular network data. With this data-driven approach, our proposed approach is versatile: it is compatible with other data sources, and it is model agnostic and thus compatible with user equilibrium, system-optimum, Stackelberg concepts, and other models. Using a dimensionality reduction scheme, we design a projected gradient algorithm suitable for the proposed route flow estimation problem. The algorithm solves a block isotonic regression problem in the projection step in linear time. The accuracy, computational efficiency, and versatility of the proposed approach are validated on the I-210 corridor near Los Angeles, where we achieve 90% route flow accuracy with 1033 traffic sensors and 1000 cellular towers covering a large network of highways and arterials with more than 20,000 links. In contrast to long-term land use planning applications, we demonstrate the first system to our knowledge that can produce route-level flow estimates suitable for short time horizon prediction and control applications in traffic management. Our system is open source and available for validation and extension.  相似文献   
123.
The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g. readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows). In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However, W-SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far an open problem, and only heuristic approaches to obtain it have been considered.This paper presents W-SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W-SPSA, and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment model and a microscopic traffic simulator, respectively.  相似文献   
124.
This paper generalizes and extends classical traffic assignment models to characterize the statistical features of Origin-Destination (O-D) demands, link/path flow and link/path costs, all of which vary from day to day. The generalized statistical traffic assignment (GESTA) model has a clear multi-level variance structure. Flow variance is analytically decomposed into three sources, O-D demands, route choices and measurement errors. Consequently, optimal decisions on roadway design, maintenance, operations and planning can be made using estimated probability distributions of link/path flow and system performance. The statistical equilibrium in GESTA is mathematically defined. Its multi-level statistical structure well fits large-scale data mining techniques. The embedded route choice model is consistent with the settings of O-D demands considering link costs that vary from day to day. We propose a Method of Successive Averages (MSA) based solution algorithm to solve for GESTA. Its convergence and computational complexity are analyzed. Three example networks including a large-scale network are solved to provide insights for decision making and to demonstrate computational efficiency.  相似文献   
125.
In the field of Swarm Intelligence, the Bee Colony Optimization (BCO) has proven to be capable of solving high-level combinatorial problems, like the Flight-Gate Assignment Problem (FGAP), with fast convergence performances. However, given that the FGAP can be often affected by uncertainty or approximation in data, in this paper we develop a new metaheuristic algorithm, based on the Fuzzy Bee Colony Optimization (FBCO), which integrates the concepts of BCO with a Fuzzy Inference System. The proposed method assigns, through the multicriteria analysis, airport gates to scheduled flights based on both passengers’ total walking distance and use of remote gates, to find an optimal flight-to-gate assignment for a given schedule. Comparison of the results with the schedules of real airports has allowed us to show the characteristics of the proposed concepts and, at the same time, it stressed the effectiveness of the proposed method.  相似文献   
126.
In order to improve cooperation between traffic management and travelers, traffic assignment is the key component to achieve the objectives of both traffic management and route choice decisions for travelers. Traffic assignment can be classified into two models based on the behavioral assumptions governing route choices: User Equilibrium (UE) and System Optimum (SO) traffic assignment. According to UE and SO traffic assignment, travelers usually compete to choose the least cost routes to minimize their own travel costs, while SO traffic assignment requires travelers to work cooperatively to minimize overall cost in the road network. Thus, the paradox of benefits between UE and SO indicates that both are not practical. Thus, a solution technique needs to be proposed to balance UE and SO models, which can compromise both sides and give more feasible traffic assignments. In this paper, Stackelberg game theory is introduced to the traffic assignment problem, which can achieve the trade-off process between traffic management and travelers. Since traditional traffic assignments have low convergence rates, the gradient projection algorithm is proposed to improve efficiency.  相似文献   
127.
This paper proposes and analyzes a distance-constrained traffic assignment problem with trip chains embedded in equilibrium network flows. The purpose of studying this problem is to develop an appropriate modeling tool for characterizing traffic flow patterns in emerging transportation networks that serve a massive adoption of plug-in electric vehicles. This need arises from the facts that electric vehicles suffer from the “range anxiety” issue caused by the unavailability or insufficiency of public electricity-charging infrastructures and the far-below-expectation battery capacity. It is suggested that if range anxiety makes any impact on travel behaviors, it more likely occurs on the trip chain level rather than the trip level, where a trip chain here is defined as a series of trips between two possible charging opportunities (Tamor et al., 2013). The focus of this paper is thus given to the development of the modeling and solution methods for the proposed traffic assignment problem. In this modeling paradigm, given that trip chains are the basic modeling unit for individual decision making, any traveler’s combined travel route and activity location choices under the distance limit results in a distance-constrained, node-sequenced shortest path problem. A cascading labeling algorithm is developed for this shortest path problem and embedded into a linear approximation framework for equilibrium network solutions. The numerical result derived from an illustrative example clearly shows the mechanism and magnitude of the distance limit and trip chain settings in reshaping network flows from the simple case characterized merely by user equilibrium.  相似文献   
128.
面向城轨客流时变需求,在给定乘客服务水平的限制下,耦合出行需求与列车始发时间,优化城轨线路列车运行计划,使得列车对数和列车车底数最小化。以具有单一尽头车场的列车运行计划优化问题为研究背景,将该问题分解为列车时刻表优化子问题和列车周转方案优化子问题。针对列车时刻表优化子问题,提出基于时刻表的客流分配方法,构建相应的列车时刻表优化模型,并设计列车时刻表双向关联序列化优化算法;针对列车周转方案优化子问题,建立相应的列车周转方案优化指派模型,同时设计求解该模型的匈牙利算法。算例分析表明:本优化产生的列车运行计划,在满足乘客服务水平的基础上,最大限度地降低了列车运行成本,依次使得列车对数、列车车底数最少,证明模型和算法的有效性。  相似文献   
129.
客运专线梁场规划设计方案的合理优化成为设计、施工承包商和业主共同关注的重点难点问题之一.规划设计方案的好坏不仅关系到客运专线桥梁施工能否顺利进行,也直接影响承包商的经济效益,对于节约投资、保证箱梁的质量及工程工期都起着重要的作用.本文就影响客运专线梁场规划设计方案的因素进行深入分析,针对客运专线梁场设计中梁场选址、梁场规模及布置形式的确定以及梁场对环境影响等关键因素,建立方案评价指标体系.通过随机赋权确定各目标因素权重,建立评判矩阵,采用双层模糊综合评判,进行梁场规划设计方案评价.最后,结合客运专线梁场的规划设计方案算例,对该方法进行应用说明.  相似文献   
130.
通过对京津城际列车快通卡刷卡人数统计分析,挖掘出快通卡客流在非小长假期间具有以星期和列车始发时间为周期的规律,在小长假期间具有和去年同期相似的客流规律.依据此规律通过指数平滑法对京津城际列车快通卡客流进行了预测,研究开发了京津城际列车快通卡票额智能分配系统并成功应用于现场.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号