全文获取类型
收费全文 | 235篇 |
免费 | 5篇 |
专业分类
公路运输 | 40篇 |
综合类 | 47篇 |
水路运输 | 135篇 |
铁路运输 | 13篇 |
综合运输 | 5篇 |
出版年
2023年 | 4篇 |
2022年 | 5篇 |
2021年 | 14篇 |
2020年 | 14篇 |
2019年 | 4篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 7篇 |
2015年 | 16篇 |
2014年 | 10篇 |
2013年 | 11篇 |
2012年 | 19篇 |
2011年 | 14篇 |
2010年 | 16篇 |
2009年 | 14篇 |
2008年 | 13篇 |
2007年 | 18篇 |
2006年 | 14篇 |
2005年 | 10篇 |
2004年 | 5篇 |
2003年 | 2篇 |
2002年 | 1篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1988年 | 3篇 |
1984年 | 1篇 |
排序方式: 共有240条查询结果,搜索用时 15 毫秒
121.
薄壁圆柱在轴向冲击力作用下的动力学响应 总被引:2,自引:1,他引:1
利用有限元软件ABAQUS分析了钢和铝合金薄壁圆柱在轴向冲击力作用下的动力学响应。在相同的参数条件和初边值条件下,通过与相关文献的数值结果对比验证了所取参数的正确性和可靠性。讨论了不同碰撞速度,不同质量比,不同边界条件对平均作用力,塑性铰的形状和个数的影响。数值实验表明,随着碰撞速度的提高,平均作用力会相应增大,撞击薄壁结构的刚性质量块和薄壁结构的质量比对平均作用力没有影响。薄壁结构吸收的能量和薄壁结构本身的几何特性和材料特性将决定变形后塑性铰的个数。 相似文献
122.
123.
目前,对加筋板稳定性的研究多采用有限元法,缺乏理论指导。本文忽略材料非线性的影响,利用理论方法求解四边简支加筋板的整体屈曲临界应力。对有单根加强筋的加筋板,首先假设板的挠曲函数,接着将其代入板和加强筋的边界方程和协调方程,最后解线性方程组的特征方程得到加筋板的临界应力计算公式。为了验证该公式正确与否,选取多个算例,利用有限元软件Abaqus和Nastran进行数值仿真,与理论解比较后得出本文推导的公式是正确的,并得出临界应力随γ和δ的变化趋势。 相似文献
124.
采用有限元软件ANSYS建立某大跨度钢箱梁式架桥机在浇筑施工状态下弹塑性有限元模型。基于非线性屈曲理论,采用位移控制的弧长法加载跟踪结构平衡路径,对含初始几何缺陷的架桥机结构进行非线性屈曲分析。通过对失稳特征点的荷载—位移曲线分析,确定该型架桥机施工状态下的极限承载力、局部稳定和整体稳定的安全系数。架桥机的极限承载力为3 755t,大于设计施工荷载1 600t,整体稳定安全系数为2.35,但局部稳定安全系数仅为1.32;失稳位置发生在支座以及跨中的底板、横隔板、腹板等处。由非线性屈曲分析结果与特征值屈曲分析结果的对比分析得到:对于复杂结构,由于结构内局部发生屈曲后荷载会发生转移,其结构并未失去整体承载能力,因此由非线性屈曲分析得到的临界载荷可能大于由特征值屈曲分析得到的临界载荷。 相似文献
125.
126.
[Objectives]It is easy to produce buckling distortion when welding thin plate butt joints, which affects the construction period, cost and performance, but this can be controlled by applying external restraints. [Methods ] First, a butt welding test of a thin plate under external restraints is carried out, and the out-of-plane deformation is measured by the optical surface scanning method. At the same time, finite element (FE) models in a free state and external restraint state are established, and the thermal mechanical phenomena of the two models are subjected to thermal-elastic-plastic FE analysis (TEP FE). The influence of different external restraint distributions on the welding buckling distortion of the joints is then studied, and reasons for controlling welding buckling distortion are analyzed from the perspective of longitudinal plastic strain and longitudinal contraction force.[Results ] The out-of-plane deformation of the corresponding model is in good agreement with the measured results, and milder than the out-of-plane deformation of the model in a free state. When external restraints are applied, the longitudinal plastic strain of the weld and its adjacent metal decreases, and the longitudinal contraction force of the thin plate also decreases.[Conclusions ] The results verify that external restraints can effectively control welding buckling distortion, and the control effects are different depending on the external restraint distribution. © 2023 Chinese Journal of Ship Research. All rights reserved. 相似文献
127.
128.
As an application to predict and mitigate the out-of-plane welding distortion by elastic FE analysis based on the inherent deformation theory, a panel structure of a pure car carrier ship is considered. The inherent deformations of different types of welded joints included in this ship panel structure are evaluated beforehand using thermal elastic plastic FE analysis. Applying idealized boundary condition to focus on the local deformation, elastic FE analysis shows that the considered ship panel structure will buckle near the edge and only bending distortion is dominant in the internal region. In order to mitigate out-of-plane welding distortion such as buckling and bending, straightening using line heating is employed. In the internal region, only inherent bending with the same magnitude as welding induced inherent bending is applied on the opposite side of welded joints (fast moving torch). On the other hand, only in-plane inherent strain produced by line heating is introduced to the edge region to correct buckling distortion (slow moving torch). The magnitude of out-of-plane welding distortion in this ship panel structure can be minimized to an accepted level. 相似文献
129.
In a Thermal-Elastic-Plastic (TEP) FE analysis to investigate welding induced buckling of large thin plate welded structure such as ship panel, it will be extremely difficult to converge computation and obtain the results when the material and geometrical non-linear behaviors are both considered. In this study, an efficient FE computation which is an elastic FE analysis based on inherent deformation method, is proposed to predict welding induced buckling with employing large deformation theory, and an application in ship panel production is carried out. The proposed FE computation is implemented with two steps:(1) The typical weld joint (fillet weld) existing in considered ship panel structure is conducted with sequential welding using actual welding condition, and welding angular distortion after completely cooling down is measured. A TEP FE analysis with solid elements model is carried out to predict the welding angular distortion, which is validated by comparing with experimental results. Then, inherent deformations in this examined fillet welded joint are evaluated as a loading for the subsequent elastic FE analysis. Also, the simultaneous welding to assemble this fillet welded joint is numerically considered and its inherent deformations are evaluated.(2) To predict the welding induced buckling in the production of ship panel structure, a shell element model of considered ship panel is then employed for elastic FE analysis, in which inherent deformation evaluated beforehand is applied and large deformation is considered. The computed results obviously show welding induced buckling in the considered ship panel structure after welding. With its instability and difficulty for straightening, welding induced buckling prefers to be avoided whenever it is possible. 相似文献
130.