首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1341篇
  免费   89篇
公路运输   482篇
综合类   453篇
水路运输   242篇
铁路运输   179篇
综合运输   74篇
  2024年   7篇
  2023年   12篇
  2022年   18篇
  2021年   46篇
  2020年   40篇
  2019年   34篇
  2018年   24篇
  2017年   20篇
  2016年   25篇
  2015年   32篇
  2014年   131篇
  2013年   68篇
  2012年   130篇
  2011年   133篇
  2010年   114篇
  2009年   95篇
  2008年   90篇
  2007年   123篇
  2006年   96篇
  2005年   63篇
  2004年   22篇
  2003年   17篇
  2002年   17篇
  2001年   18篇
  2000年   9篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   1篇
排序方式: 共有1430条查询结果,搜索用时 15 毫秒
51.
桥面防水粘结层性能试验分析   总被引:4,自引:0,他引:4  
采用室内剪切试验和拉拔试验,分析桥面防水粘结层材料性能,认为层间抗剪强度及粘结强度受温度影响大,并且随着试验环境温度的升高而减小.现场拉拔试验研究了不同温度下4种粘结层材料与桥面板的粘结强度变化规律,其粘结强度同样随着试验环境温度的升高而减小.研究表明,剪切试验与拉拔试验结果能够综合评价高、低温情况下沥青混合料与粘结层的整体性能,还可以作为桥面粘结层是否满足抗剪要求的验证指标.  相似文献   
52.
根据冷再生层厚度以及不同的残留层厚度和模量,建立路面结构力学模型,利用有限元软件对路面结构进行计算,得到残留层厚度和模量的变化与冷再生层层底拉应力的变化规律,分析了残留基层厚度对路面结构的影响.  相似文献   
53.
公路隧道洞口斜交、偏压段施工技术   总被引:1,自引:0,他引:1  
以云山隧道右线进口不良地质段为实例,详细介绍了洞身与山体斜交、偏压时,采用双层超前小导管注浆加固隧道围岩进洞时小导管的设计参数、施工工艺、施工要点等,对同类工程施工有一定借鉴作用。  相似文献   
54.
基于路基上双块式无砟轨道的计算力学模型,针对道床板不同宽度和深度情况下的表面裂纹和贯通裂纹,分析在列车荷载作用下道床板开裂前后对道床板受力性能的影响以及在轴向温度荷载作用下含裂纹的道床板受力情况。结果表明,在列车荷载作用下,含裂纹的无砟轨道与无裂纹的无砟轨道相比,道床板混凝土应力有小幅度增加,纵向钢筋应力随裂纹深度的增加而逐渐增大;在轴向温度荷载作用下,随着裂纹宽度的增大,道床板混凝土拉应力及钢筋应力变化较小。  相似文献   
55.
根据济南泉域富水砂卵石地层特点,通过文献调查、理论分析、现场实测,并借助数值模拟计算,分析并优化基坑下卧弱隔水层注浆加固方案,得到注浆加固质量控制技术要点,提出端头井土体加固与封闭止水帷幕下辅助降水的关键技术,研发基坑降水回灌一体化系统及配套装备,攻克传统回灌技术存在的抽灌分离、回灌效率低、运维成本高等施工难题,阐述回灌水质处理、自动加压回灌及水位联动回灌等关键技术创新点,改良回灌井过滤器设置及止水段施工技术,形成富水砂卵层基坑封闭降水与回灌工程关键技术,对推广基坑降水与回灌工程的绿色化、信息化、智能化有一定指导作用。  相似文献   
56.
阐述了覆盖层秦淮河对戴家岗段航道水下钻孔爆破的影响,介绍了内河航道水下钻孔爆破的设计与施工工艺,并提出了相应的解决方法.  相似文献   
57.
本文主要介绍哈尔滨至大连铁路客运专线褥垫层施工工艺。  相似文献   
58.
Sandy sediments in shallow coastal waters of the Baltic Sea are often characterised by large numbers of biogenic structures which are produced by macrozoobenthos species. A series of experiments was devised to quantify how the interaction of such structures with the near-bed flow regime affects the sediment flux. Most experiments were done with simplified replicates of structures generated by typical species commonly found in the Mecklenburg Bight, starting with solitary structures and regularly-spaced arrays in a range of characteristic population densities, followed by a complex benthic macrofauna community, both artificial and alive. A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a topography scanning laser, was used for high-resolution measurements (2 mm horizontal step size and 0.3 mm vertical resolution) of sand erosion (220 µm median grain size, at 20 cm s− 1) and fine particle deposition (8 µm grain size, at 5 cm s− 1). Sediment transport threshold values were measured for each layout. As a rule-of-thumb, both the erosion fluxes and the deposition of suspended matter increased considerably at low population densities (below 2%, expressed as percent of the sediment surface covered, i.e. roughness density RD). Above densities of 4%, erosion almost stopped inside the test arrays, and deposition remained well below the level of unpopulated areas. An attempt to extrapolate these findings to field conditions (using field current velocity data from 2001) showed that the net flux switched from erosion to deposition for densities above 5%. These parameters can now be integrated into a numerical sediment transport model coupling waves, currents, sediment dynamics and biological processes, which is currently under construction at the Baltic Sea Research Institute (IOW), Rostock, Germany.  相似文献   
59.
Characteristic flow patterns generated by macrozoobenthic structures   总被引:2,自引:2,他引:0  
A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s− 1 and 10 cm s− 1) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1–2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of food particle capture due to altered particle pathways and residence times, but also for the exchange of gases, solutes and spawn. The present results confirm previous studies on flow interaction effects of various biogenic structures, and they add a deeper level of detail for a better understanding of the fine-scale effects.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号