首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1027篇
  免费   39篇
公路运输   148篇
综合类   536篇
水路运输   125篇
铁路运输   115篇
综合运输   142篇
  2024年   2篇
  2023年   5篇
  2022年   23篇
  2021年   27篇
  2020年   27篇
  2019年   24篇
  2018年   38篇
  2017年   33篇
  2016年   37篇
  2015年   46篇
  2014年   52篇
  2013年   61篇
  2012年   67篇
  2011年   80篇
  2010年   73篇
  2009年   70篇
  2008年   55篇
  2007年   75篇
  2006年   70篇
  2005年   39篇
  2004年   38篇
  2003年   22篇
  2002年   16篇
  2001年   20篇
  2000年   12篇
  1999年   6篇
  1998年   9篇
  1997年   2篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   1篇
  1991年   7篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有1066条查询结果,搜索用时 15 毫秒
851.
This study extends the orienteering problem with time windows by considering electric vehicles (EV) with limited range. The model can simulate the change in the battery’s state of charge at each point along the routes, and thus can be used to solve the problem of EV tourist trip design with time windows. A land-sea integrated network for Penghu low-carbon islands was tested, and then the optimal green trip designs are obtained using a heuristic method. Some unique properties of the model are also discussed, as well as a number of management or planning implications.  相似文献   
852.
In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on the time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.  相似文献   
853.
854.
We analyze the double moral hazard problem at the joint venture type airport–airline vertical relationship, where two parties both contribute efforts to the joint venture but neither of them can see the other’s efforts. With the continuous-time stochastic dynamic programming model, we show that by the de-centralized utility maximizations of two parties under very strict conditions, i.e., optimal efforts’ cost being negligible and their risk averse parameters both asymptotically approaching to zero, the vertical contract could be agreed as the optimal sharing rule, which is the linear function of the final state with the slope being the product of their productivity difference and uncertainty (diffusion rate) level index.If both parties’ productivities are same, or the diffusion rate of the underlying process is unity, optimal linear sharing rule do not depend on the final state. If their conditions not dependent on final state are symmetric as well, then risk sharing disappears completely. In numerical examples, we illustrate the complex impact of uncertainty increase and end-of-period load factor improvement on the optimal sharing rule, and the relatively simple impact on total utility levels.  相似文献   
855.
Complexity in transport networks evokes the need for instant response to the changing dynamics and uncertainties in the upstream operations, where multiple modes of transport are often available, but rarely used in conjunction. This paper proposes a model for strategic transport planning involving a network wide intermodal transport system. The system determines the spatio-temporal states of road based freight networks (unimodal) and future traffic flow in definite time intervals. This information is processed to devise efficient scheduling plans by coordinating and connecting existing rail transport schedules to road based freight systems (intermodal). The traffic flow estimation is performed by kernel based support vector mechanisms while mixed integer programming (MIP) is used to optimize schedules for intermodal transport network by considering various costs and additional capacity constraints. The model has been successfully applied to an existing Fast Moving Consumer Goods (FMCG) distribution network in India with encouraging results.  相似文献   
856.
The current state-of-practice for predicting travel times assumes that the speeds along the various roadway segments remain constant over the duration of the trip. This approach produces large prediction errors, especially when the segment speeds vary temporally. In this paper, we develop a data clustering and genetic programming approach for modeling and predicting the expected, lower, and upper bounds of dynamic travel times along freeways. The models obtained from the genetic programming approach are algebraic expressions that provide insights into the spatiotemporal interactions. The use of an algebraic equation also means that the approach is computationally efficient and suitable for real-time applications. Our algorithm is tested on a 37-mile freeway section encompassing several bottlenecks. The prediction error is demonstrated to be significantly lower than that produced by the instantaneous algorithm and the historical average averaged over seven weekdays (p-value <0.0001). Specifically, the proposed algorithm achieves more than a 25% and 76% reduction in the prediction error over the instantaneous and historical average, respectively on congested days. When bagging is used in addition to the genetic programming, the results show that the mean width of the travel time interval is less than 5 min for the 60–80 min trip.  相似文献   
857.
Decision-making for selecting sustainable suppliers has become an intricate duty. To rank sustainable suppliers and select benchmarks this paper proposes an efficiency improvement plan. Two levels of improvement plans including goals and benchmarks are presented for the suppliers. To this end, the first-level goals are obtained using goal programming (GP) and data envelopment analysis (DEA). Since inputs and outputs of the first-level goals might be imprecise, robust Charnes-Cooper-Rhodes (CCR) model is run. As a result, the benchmarks of the second-level are obtained. Then, a robust CCR inefficiency model is applied for ranking the suppliers. In fact, such a ranking capability is made by creating double-frontiers including CCR efficiency and inefficiency frontiers. Accordingly, the suppliers are ranked using the first-level goals. In the new ranking, uncertainty of the goals is considered by running robust optimization technique. The proposed approach provides technical and planning capabilities which are demonstrated by a case study.  相似文献   
858.
为降低有轨电车在交叉口的停车次数和交通延误,同时兼顾社会车辆通行效率,提出可容纳直行线路、左转线路有轨电车和社会车辆3类绿波系统的干线信号协调控制方法。设计直左轨道分叉交叉口的4种信号相位组合方案,构建社会车辆绿波系统、有轨电车直行线路和左转线路绿波系统的约束条件,以及3个绿波系统的交互性约束条件。基于可变绿波带宽优化模型,提出以社会车辆绿波带宽最大为优化目标的混合整数规划模型,并应用算例对所提模型进行有效性验证。研究结果表明:算例中有轨电车线路绿波带宽为10 s,社会车辆双向绿波带宽不低于34 s,最大绿波带宽为63.6 s。本文模型能够在满足直行与左转复线有轨电车绿波通行的条件下,为干线社会车辆提供最大带宽绿波,有效提升了直左复线有轨电车与干线社会车辆整体的通行效率。  相似文献   
859.
A methodology for optimizing variable pedestrian evacuation guidance in buildings with convex polygonal interior spaces is proposed. The optimization of variable guidance is a bi-level problem. The calculation of variable guidance based on the prediction of congestion and hazards is the upper-level problem. The prediction of congestion provided the variable guidance is the lower-level problem. A local search procedure is developed to solve the problem. The proposed methodology has three major contributions. First, a logistic regression model for guidance compliance behavior is calibrated using a virtual reality experiment and the critical factors for the behavior are identified. Second, the guidance compliance and following behaviors are considered in the lower-level problem. Third, benchmarks are calculated to evaluate the performance of optimized variable guidance, including the lower bound of the maximum evacuation time and the maximum evacuation time under a fixed guidance. Finally, the proposed methodology is validated with numerical examples. Results show that the method has the potential to reduce evacuation time in emergencies.  相似文献   
860.
This paper presents a study towards the development of a real-time taxi movement planning system that seeks to optimize the timed taxiing routes of all aircraft on an airport surface, by minimizing the emissions that result from taxiing aircraft operations. To resolve this online planning problem, one of the most commonly employed operations research methods for large-scale problems has been successfully used, viz., mixed-integer linear programming (MILP). The MILP formulation implemented herein permits the planning system to update the total taxi planning every 15 s, allowing to respond to unforeseen disturbances in the traffic flow. Extensive numerical experiments involving a realistic (hub) airport environment bear out that an estimated environmental benefit of 1–3 percent per emission product can be obtained. This research effort clearly demonstrates that a surface movement planning system capable of minimizing the emissions in conjunction with the total taxiing time can be beneficial for airports that face dense surface traffic and stringent environmental requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号