首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9445篇
  免费   623篇
公路运输   2291篇
综合类   3671篇
水路运输   2161篇
铁路运输   1350篇
综合运输   595篇
  2024年   37篇
  2023年   88篇
  2022年   217篇
  2021年   296篇
  2020年   373篇
  2019年   274篇
  2018年   284篇
  2017年   278篇
  2016年   335篇
  2015年   427篇
  2014年   690篇
  2013年   580篇
  2012年   782篇
  2011年   831篇
  2010年   591篇
  2009年   621篇
  2008年   560篇
  2007年   758篇
  2006年   656篇
  2005年   407篇
  2004年   245篇
  2003年   172篇
  2002年   100篇
  2001年   148篇
  2000年   61篇
  1999年   49篇
  1998年   33篇
  1997年   26篇
  1996年   25篇
  1995年   15篇
  1994年   25篇
  1993年   17篇
  1992年   11篇
  1991年   13篇
  1990年   15篇
  1989年   11篇
  1988年   10篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
为提高城市智能交通综合管理能力, 提出了基于视频分析的运动车辆检测与跟踪方法。在城市交通干道路面环境中, 根据运动目标与道路背景统计特性的差异, 基于贝叶斯概率准则, 提出一个自适应背景更新算法, 检测分离运动车辆目标前景, 采用卡尔曼滤波器实现对视频序列中车辆目标的运动检测与实时跟踪, 并对在重庆某交通干道的交通流视频进行检测。试验结果表明: 该方法在常规视频分辨率下能实现实时处理视频, 平均检测准确率为94%, 具有较好的实时性与鲁棒性, 能够实现城市交通环境中各类运动车辆的检测与跟踪。  相似文献   
882.
交通信号协调控制方案过渡优化算法   总被引:2,自引:0,他引:2  
建立了信号控制方案过渡前后的交叉口相位差调整量关系方程组, 针对各交叉口过渡信号周期的允许取值范围, 利用交叉口相位差调整比例的极小极大原理, 提出了单周期对称调节过渡算法与N周期加权调节过渡算法。分析结果表明: 单周期对称调节过渡算法将在满足一次过渡条件下, 实现交叉口相位差实际调整量最大值的最小化; N周期加权调节过渡算法则可以综合考虑各交叉口过渡信号周期的不同允许取值范围, 根据交叉口相位差最大调整比例的最小化要求, 通过N个过渡信号周期最终实现协调控制方案的快速平滑过渡。与其他过渡算法相比, N周期加权调节过渡算法实现了对于控制区域内交叉口相位差调整量的整体优化, 使过渡方案能够更好地满足不同信号交叉口的控制需求, 具有更广的适用范围与实用性。  相似文献   
883.
针对船舶在海上作业时动力定位控制系统需要精准定位的问题,提出基于改进跟踪微分器的自抗扰控制器,解决线性自抗扰控制器由于省略跟踪微分器而降低系统动态性能的问题。结合线性与非线性跟踪微分器的优点,设计能够较好跟踪微分信号,且能降低噪声对系统影响的改进跟踪微分器,从而构成新型线性自抗扰控制器。仿真实验结果表明,相比于传统的线性自抗扰控制器,基于改进跟踪微分器的LADRC有较强的鲁棒性和自适应性,且超调小、响应快、抗扰能力强。  相似文献   
884.
利用非线性理论和混沌时间序列分析方法, 建立了桥梁风致振动的数学模型, 开发了计算桥梁振动加速度时间序列Lyapunov指数的MATLAB程序, 进行了桥梁涡振和颤振的风洞试验, 分析了不同风攻角下的桥梁风致振动的阻尼比、Lyapunov指数与风速的关系以及涡振振幅与风速的关系, 研究了桥梁颤振和涡振的混沌特性。试验结果表明: 在颤振试验中, 当风速小于颤振临界风速15.5m·s-1时, Lyapunov指数小于0, Lyapunov指数与阻尼比存在很大的相关性, 当风速从3m·s-1增大为18m·s-1时, 相空间逐渐发散; 在涡振试验中, 当风速从4.5m·s-1增大至8.5m·s-1时, Lyapunov指数大于0, 桥梁发生明显涡振, 并由多频振动逐渐转变为单频振动, 相空间变为一个较为理想的圆。桥梁的涡振与颤振均属于混沌现象, 低风速下的Lyapunov指数可用来预测高风速下的风致振动, 并且利用相空间也能识别涡振与颤振。  相似文献   
885.
列车运行调整是铁路调度部门的重点研究对象,而自动调整是衡量铁路调度指挥自动化水平的核心。因此,以偏离运行图最小为优化目标,考虑了区间运行时分、追踪间隔时间、车站停车时分、越行约束等6个约束条件,建立了列车运行调整模型;在算法方面,针对遗传算法的缺陷,如收敛速度较慢,易于早熟收敛,提出了1种效果较好的免疫遗传算法,并对编码方案、适应度函数、抗体浓度、变异算子等进行设计改进。仿真结果表明该算法与遗传算法相比,在收敛速度,最优值以及试验成功率方面都具有更为优越的特性,可为调度人员提供1个较好的调整方案。  相似文献   
886.
考虑多种因素影响下初始绿灯时间和车辆到达服从概率分布特征,提出了1种交叉口感应控制最大绿灯时间优化模型,以交叉口平均延误、停车次数、排队长度为评价指标,利用 Vissim 仿真软件,将该模型与传统感应控制模型进行对比。仿真结果表明提出的算法在不同的饱和度下改进效果比较明显,尤其当交通量较大、饱和度较高时,传统感应控制效果有限,采用该模型的改进效果依然显著。  相似文献   
887.
为量化机车编组方式对重载列车再充气特性的影响, 结合神华铁路万吨重载列车纵向动力学试验结果, 对万吨重载列车再充气特性进行分析, 并利用基于气体流动理论的空气制动系统仿真方法, 建立列车空气制动系统模型, 通过试验对比验证仿真系统的准确性, 对不同机车编组、多机车不同滞后时间和不同减压量的再充气过程进行仿真。计算结果表明: 列车头部机车数目增加对首车再充气特性影响较小, 2种编组列车的副风缸压强差值小于15kPa; 单编列车充风时间是3辆机车编组充风时间的2.4倍; 当机车集中于列车前部时, 充风时间缩短量与机车数目增加量非正比关系, 即3辆机车集中编组的充风时间不是单编列车充风时间的3/10;机车数目对于充风时间的影响完全取决于编组方式, 分散编组减压50kPa的充风时间较集中编组节省37%~75%, 机车集中编组减压110kPa的充风时间是分散编组的1.5~3.5倍, 分散编组常用全制动的充风时间为机车集中编组的30%~63%;从控机车滞后时间对充风时间影响较小, 充风时间增长量与滞后时间相近; 得到4种机车编组方式不同减压量的充风时间的二次拟合函数, 随着减压量的增加, 4种机车编组的充风时间增长缓慢。  相似文献   
888.
为提高舰船运载机组稳定性, 并有效抑制振动, 在机组推进轴系中采用了一种可倾瓦轴承支点弹性技术(瓦块支点安装有蝶形弹簧), 以某大型燃气轮机为对象, 在轴系四瓦可倾瓦轴承瓦块支点处引入蝶形弹簧结构, 并采用流固热耦合计算模型和轴承多场分析技术, 分析了可倾瓦轴承的温度场、压力场、刚度与阻尼等特性参数, 研究了支点弹性技术对大型可倾瓦轴承摩擦学与动力学特性的影响规律。计算结果表明: 在3 000r·min-1工作转速下, 刚支结构时可倾瓦轴承最大油膜压力为6.5MPa, 弹支结构时最大油膜压力为6.7MPa, 弹支结构相比刚支结构轴承油膜压力略有上升, 此时2种支点结构轴承的温度变化不大, 最高温度分别为98.95℃与98.85℃; 随着转速的增大, 2种支点结构可倾瓦轴承的主刚度均呈下降趋势, 而其交叉刚度只在±0.1MN·m-1范围内变化; 在3 000r·min-1下, 弹支结构轴承主刚度为3.5GN·m-1, 主阻尼为6MN·s·m-1, 相比刚支结构轴承主刚度提高了59%, 主阻尼提高了39%。可见: 可倾瓦轴承采用瓦块支点弹性技术, 轴承温度变化不大, 最高油膜压力略有增加, 轴承主刚度和主阻尼明显提高, 这对增加稳定性和抑制振动十分有利。  相似文献   
889.
根据公交浮动车辆实时GPS数据, 考虑不同时段的路段平均速度、公交车站、信号灯等多因素的影响, 建立了一种新的公交车辆到站时间预测模型。通过估计到达下游最临近站点的时间和判断道路上GPS数据的有效性等方法, 改善了预测模型的精度, 并应用重庆公交车辆数据对模型进行验证。计算结果表明: 该模型能够实时预测公交浮动车辆到达下游站点的时间, 预测精度优于现有方法, 在高峰时段预测误差小于9%, 在非高峰时段预测误差约为6%, 并对各种道路交通条件具有较好的适应性。  相似文献   
890.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号