首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12662篇
  免费   747篇
公路运输   3704篇
综合类   6295篇
水路运输   1454篇
铁路运输   1047篇
综合运输   909篇
  2024年   43篇
  2023年   95篇
  2022年   309篇
  2021年   420篇
  2020年   474篇
  2019年   333篇
  2018年   349篇
  2017年   363篇
  2016年   412篇
  2015年   572篇
  2014年   932篇
  2013年   796篇
  2012年   925篇
  2011年   1183篇
  2010年   976篇
  2009年   879篇
  2008年   892篇
  2007年   964篇
  2006年   841篇
  2005年   478篇
  2004年   299篇
  2003年   205篇
  2002年   136篇
  2001年   194篇
  2000年   82篇
  1999年   35篇
  1998年   35篇
  1997年   28篇
  1996年   32篇
  1995年   22篇
  1994年   11篇
  1993年   23篇
  1992年   18篇
  1991年   14篇
  1990年   10篇
  1989年   17篇
  1988年   3篇
  1986年   2篇
  1985年   6篇
  1984年   1篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
711.
张辉  范宝春  周本谋  陈志华 《船舶力学》2011,15(11):1210-1216
电磁场在导电的流体中产生的Lorentz力可以有效地改变流体边界层的结构,从而实现对流场的控制。基于电磁场和Lorentz力的基本方程,对由电极和磁极按一定规律排列形成的平板和圆柱状物体的电磁场空间分布,以及将其置于流动的弱电介质溶液时所形成的Lorentz力的空间分布进行了数值研究,并对Lorentz力的衰减规律、渗透深度和脉动程度进行了讨论。根据Lorentz力的数值结果,还对电磁场中的流动现象进行了数值计算,揭示了Lorentz力对圆柱绕流的控制过程。  相似文献   
712.
弹药保障,是武器系统战斗力的重要标志。着眼适应未来信息化战争运输保障的特点和要求,应用线性规划和多端网络最大流问题,将运输保障问题抽象为运筹中的线路问题,建立模型,以提高军交运输保障能力。  相似文献   
713.
在组合式推进器相同水动力性能的设计前提下,采用数值模拟的方法针对不同设计方案流噪声水平进行了计算。宽带噪声采用Proudman声功率模型及Lilley提出的AALS模型计算,线谱噪声采用径向脉动力幅值衡量,比较了不同方案不同几何参数下的噪声,并在此基础上总结出主要几何参数与噪声水平之间的关系。本文研究成果对进一步进行组合式推进器声学设计具有重要指导意义。  相似文献   
714.
In this paper we present a dual-time-scale formulation of dynamic user equilibrium (DUE) with demand evolution. Our formulation belongs to the problem class that Pang and Stewart (2008) refer to as differential variational inequalities. It combines the within-day time scale for which route and departure time choices fluctuate in continuous time with the day-to-day time scale for which demand evolves in discrete time steps. Our formulation is consistent with the often told story that drivers adjust their travel demands at the end of every day based on their congestion experience during one or more previous days. We show that analysis of the within-day assignment model is tremendously simplified by expressing dynamic user equilibrium as a differential variational inequality. We also show there is a class of day-to-day demand growth models that allow the dual-time-scale formulation to be decomposed by time-stepping to yield a sequence of continuous time, single-day, dynamic user equilibrium problems. To solve the single-day DUE problems arising during time-stepping, it is necessary to repeatedly solve a dynamic network loading problem. We observe that the network loading phase of DUE computation generally constitutes a differential algebraic equation (DAE) system, and we show that the DAE system for network loading based on the link delay model (LDM) of Friesz et al. (1993) may be approximated by a system of ordinary differential equations (ODEs). That system of ODEs, as we demonstrate, may be efficiently solved using traditional numerical methods for such problems. To compute an actual dynamic user equilibrium, we introduce a continuous time fixed-point algorithm and prove its convergence for effective path delay operators that allow a limited type of nonmonotone path delay. We show that our DUE algorithm is compatible with network loading based on the LDM and the cell transmission model (CTM) due to Daganzo (1995). We provide a numerical example based on the much studied Sioux Falls network.  相似文献   
715.
Node models for macroscopic simulation have attracted relatively little attention in the literature. Nevertheless, in dynamic network loading (DNL) models for congested road networks, node models are as important as the extensively studied link models. This paper provides an overview of macroscopic node models found in the literature, explaining both their contributions and shortcomings. A formulation defining a generic class of first order macroscopic node models is presented, satisfying a list of requirements necessary to produce node models with realistic, consistent results. Defining a specific node model instance of this class requires the specification of a supply constraint interaction rule and (optionally) node supply constraints. Following this theoretical discussion, specific macroscopic node model instances for unsignalized and signalized intersections are proposed. These models apply an oriented capacity proportional distribution of the available supply over the incoming links of a node. A computationally efficient algorithm to solve the node models exactly is included.  相似文献   
716.
In this paper, we propose a new schedule-based equilibrium transit assignment model that differentiates the discomfort level experienced by sitting and standing passengers. The notion of seat allocation has not been considered explicitly and analytically in previous schedule-based frameworks. The model assumes that passengers use strategies when traveling from their origin to their destination. When loading a vehicle, standing on-board passengers continuing to the next station have priority to get available seats and waiting passengers are loaded on a First-Come-First-Serve (FCFS) principle. The stimulus of a standing passenger to sit increases with his/her remaining journey length and time already spent on-board. When a vehicle is full, passengers unable to board must wait for the next vehicle to arrive. The equilibrium conditions can be stated as a variational inequality involving a vector-valued function of expected strategy costs. To find a solution, we adopt the method of successive averages (MSA) that generates strategies during each iteration by solving a dynamic program. Numerical results are also reported to show the effects of our model on the travel strategies and departure time choices of passengers.  相似文献   
717.
In this paper a new traffic flow model for congested arterial networks, named shockwave profile model (SPM), is presented. Taking advantage of the fact that traffic states within a congested link can be simplified as free-flow, saturated, and jammed conditions, SPM simulates traffic dynamics by analytically deriving the trajectories of four major shockwaves: queuing, discharge, departure, and compression waves. Unlike conventional macroscopic models, in which space is often discretized into small cells for numerical solutions, SPM treats each homogeneous road segment with constant capacity as a section; and the queuing dynamics within each section are described by tracing the shockwave fronts. SPM is particularly suitable for simulating traffic flow on congested signalized arterials especially with queue spillover problems, where the steady-state periodic pattern of queue build-up and dissipation process may break down. Depending on when and where spillover occurs along a signalized arterial, a large number of queuing patterns may be possible. Therefore it becomes difficult to apply the conventional approach directly to track shockwave fronts. To overcome this difficulty, a novel approach is proposed as part of the SPM, in which queue spillover is treated as either extending a red phase or creating new smaller cycles, so that the analytical solutions for tracing the shockwave fronts can be easily applied. Since only the essential features of arterial traffic flow, i.e., queue build-up and dissipation, are considered, SPM significantly reduces the computational load and improves the numerical efficiency. We further validated SPM using real-world traffic signal data collected from a major arterial in the Twin Cities. The results clearly demonstrate the effectiveness and accuracy of the model. We expect that in the future this model can be applied in a number of real-time applications such as arterial performance prediction and signal optimization.  相似文献   
718.
719.
A recent study reported that the Macroscopic Fundamental Diagram of a medium size city exhibited a clockwise hysteresis loop on a day in which a major disturbance caused many drivers to use unfamiliar routes. It is shown below that, even in a perfectly symmetric network with uniform demand, clockwise loops are to be expected when there are disturbances, especially if the disturbances cause a significant fraction of the drivers to not change routes adaptively. It is also shown that when drivers are not adaptive networks are inherently more unstable as they recover from congestion than as they are loaded. In other words, during recovery congestion tends more strongly toward unevenness because very congested areas clear more slowly than less congested areas. Since it is known that uneven congestion distributions reduce network flows, it follows that lower network flows should arise during recovery, resulting in clockwise loops. Fortunately, the presence of a sufficient number of drivers that choose routes adaptively to avoid congested areas helps to even out congestion during recovery, increasing flow. Thus, clockwise loops are less likely to occur when driver adaptivity is high.  相似文献   
720.
Modeling capacity flexibility of transportation networks   总被引:1,自引:0,他引:1  
Flexibility of the transportation system is one of the important performance measures needed to deal with demand changes. In this paper, we provide a quantitative assessment of capacity flexibility for the passenger transportation network using bi-level network capacity models. Two approaches for assessing the value of capacity flexibility are proposed. One approach is based on the concept of reserve capacity, which reflects the flexibility with respect to changes in terms of demand volume only. The second approach allows for variations in the demand pattern in addition to changes in demand volume in order to more fully capture demand changes. Two models are developed in the second approach to consider two types of capacity flexibility. The total capacity flexibility allows all users to have both route choice and destination choice when estimating capacity flexibility. The limited capacity flexibility estimates how much more demand volume could be added to a fixed demand pattern by allowing the additional demand to deviate from the fixed demand pattern. Numerical examples are provided to demonstrate the different concepts of capacity flexibility for a passenger transportation system under demand changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号