首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5009篇
  免费   304篇
公路运输   1641篇
综合类   1373篇
水路运输   978篇
铁路运输   1180篇
综合运输   141篇
  2024年   22篇
  2023年   36篇
  2022年   116篇
  2021年   182篇
  2020年   222篇
  2019年   112篇
  2018年   118篇
  2017年   119篇
  2016年   96篇
  2015年   191篇
  2014年   410篇
  2013年   274篇
  2012年   480篇
  2011年   450篇
  2010年   341篇
  2009年   286篇
  2008年   317篇
  2007年   399篇
  2006年   344篇
  2005年   210篇
  2004年   117篇
  2003年   122篇
  2002年   71篇
  2001年   63篇
  2000年   46篇
  1999年   30篇
  1998年   20篇
  1997年   24篇
  1996年   16篇
  1995年   13篇
  1994年   15篇
  1993年   10篇
  1992年   14篇
  1991年   10篇
  1990年   4篇
  1989年   3篇
  1988年   9篇
  1986年   1篇
排序方式: 共有5313条查询结果,搜索用时 234 毫秒
111.
The objective of this study is to provide a strategic evaluation of the mitigation of CO2 emissions via modal substitution of high-speed rail for short-haul air travel on the Sydney–Melbourne, Australia city-pair from a life cycle perspective. It has been demonstrated that when considering CO2 emissions from vehicle operations, the modal shift from air to high-speed rail on this city-pair has the potential to provide a means of CO2 mitigation. However, uncertainty exists with regard to the level of mitigation potential when considering the whole-of-life performance of the systems. Given the significant difference in the infrastructure requirements between the air mode and the high-speed rail mode, this study quantifies the life cycle CO2 load attributable to each system and examines the effect on CO2 mitigation potential. The study concluded that while the inclusion of the linehaul infrastructure did increase the CO2 load associated with high-speed rail mode, it did not equate to or exceed the CO2 load per trip as experienced by the air mode. The avoided annual life cycle CO2 emission in the target year 2056 was 0.37 Mt representing an 18% reduction when compared to the air mode only on the city pair. In fact, the scenario comparison indicated that the substitution of high-speed rail for short-haul air travel on the city pair resulted in CO2 emissions avoidance throughout the longitudinal period.  相似文献   
112.
The growth of vehicle sales and use internationally requires the consumption of significant quantities of energy and materials, and contributes to the deterioration of air-quality and climate conditions. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. They require life cycle assessments and detailed comparisons with gasoline powered vehicles which, in turn, should lead to critical updates of traditional models and assumptions. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. Substantially, more sustainable urban transportation can be achieved in the short-term by promoting policies that increase vehicle occupancy; in the intermediate-term by increasing the share of hybrid vehicles in the car market and in the long-term by the widespread use of electric vehicles. A sensitivity-analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and tend to favor the variable cost of hybrid vehicles.  相似文献   
113.
Bus fuel economy is deeply influenced by the driving cycles, which vary for different route conditions. Buses optimized for a standard driving cycle are not necessarily suitable for actual driving conditions, and, therefore, it is critical to predict the driving cycles based on the route conditions. To conveniently predict representative driving cycles of special bus routes, this paper proposed a prediction model based on bus route features, which supports bus optimization. The relations between 27 inter-station characteristics and bus fuel economy were analyzed. According to the analysis, five inter-station route characteristics were abstracted to represent the bus route features, and four inter-station driving characteristics were abstracted to represent the driving cycle features between bus stations. Inter-station driving characteristic equations were established based on the multiple linear regression, reflecting the linear relationships between the five inter-station route characteristics and the four inter-station driving characteristics. Using kinematic segment classification, a basic driving cycle database was established, including 4704 different transmission matrices. Based on the inter-station driving characteristic equations and the basic driving cycle database, the driving cycle prediction model was developed, generating drive cycles by the iterative Markov chain for the assigned bus lines. The model was finally validated by more than 2 years of acquired data. The experimental results show that the predicted driving cycle is consistent with the historical average velocity profile, and the prediction similarity is 78.69%. The proposed model can be an effective way for the driving cycle prediction of bus routes.  相似文献   
114.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   
115.
就新辟航线首制船“汉亚直达”集装箱船的低硫柴油系统,叙述了船舶低硫柴油系统的设计经验,从当前国内外对船用燃油硫含量的要求、应对方案到船舶低硫柴油冷却方式选择、低硫柴油冷却系统设计、高/低硫柴油转换、使用低硫柴油风险分析及处理等方面进行详细叙述,为业内同行提供参考。  相似文献   
116.
SK?2型双块式混凝土轨枕是高速铁路无砟轨道结构中的重要预制件,单一生产厂日均产量达到800~1400根,但目前的人工检测方式无法满足双块式轨枕的出厂检验要求。本文提出的双块式轨枕外形质量快速检测系统可满足TB/T 3397—2015《CRTS双块式无砟轨道混凝土轨枕》的出厂检验要求,与双块式轨枕生产线相匹配,大大提高了检测效率,实现了双块式轨枕全参数、自动化、智能化检测。检测数据自动上传至生产管理平台,可对双块式轨枕生产质量进行跟踪管理。  相似文献   
117.
This paper uses a case study of a UK inter-urban road, to explore the impact of extending the system boundary of road pavement life cycle assessment (LCA) to include increased traffic emissions due to delays during maintenance. Some previous studies have attempted this but have been limited to hypothetical scenarios or simplified traffic modelling, with no validation or sensitivity analysis. In this study, micro-simulation modelling of traffic was used to estimate emissions caused by delays at road works, for several traffic management options. The emissions were compared to those created by the maintenance operation, estimated using an LCA model. In this case study, the extra traffic emissions caused by delays at road works are relatively small, compared to those from the maintenance process, except for hydrocarbon emissions. However, they are generally close to, or above, the materiality threshold recommended in PAS2050 for estimating carbon footprints, and reach 5–10% when traffic flow levels are increased (hypothetically) or when traffic management is imposed outside times of lowest traffic flow. It is recommended, therefore, that emissions due to traffic disruption at road works should be included within the system boundary of road pavement LCA and carbon footprint studies and should be considered in developing guidelines for environmental product declarations of road pavement maintenance products and services.  相似文献   
118.
高速铁路桥梁的平顺性和稳定性对运营列车的平稳性和安全性有很大影响。为研究冲压机械产生的外部振动激励对高铁桥梁的影响,首先通过对此机械引起的地面振动进行实测,并结合有限元分析软件,确定最大冲击荷载作用下产生的地面振动及传播至桥墩处的振动;然后通过建立列车-轨道-桥梁耦合动力学模型,将桥墩处的地面振动作为激励输入,分析列车以不同速度通过时车辆、桥梁动力学响应。结果表明:地面冲击振动有限元模型计算结果与实测结果基本相符,验证了模型的可靠性;地面振动对桥梁响应会产生一定的影响,距振源50 m处地面振动对桥梁所产生的影响较距振源80 m处(桥墩处)的大,但对运行车辆的影响很小;随着车速由250 km/h至350 km/h,车辆及桥梁各结构的动态响应均有所增大,但都未超出安全限值。因此,冲压机械冲击作用导致的地面振动对列车-轨道-桥梁系统动态服役性能影响非常有限。  相似文献   
119.
爆炸硬化高锰钢组合辙叉是近几年针对重载铁路使用条件开发的一种新型固定型辙叉产品,在批量上道使用后,水平裂纹伤损发生频次逐渐增加,引起广泛的关注。对水平裂纹伤损产生的原因进行分析,并提出多项改进措施。通过改进措施的实施,在朔黄线取得了较好的改进效果。实际结果表明,通过不断改进工艺、提高质量、加强维护,爆炸硬化高锰钢组合辙叉能够实现通过总重3亿t以上的目标。  相似文献   
120.
Compared with most optimization methods for capacity evaluation, integrating capacity analysis with timetabling can reveal the types of train line plans and operating rules that have a positive influence on improving capacity utilization as well as yielding more accurate analyses. For most capacity analyses and cyclic timetabling methods, the cycle time is a constant (e.g., one or two hours). In this paper, we propose a minimum cycle time calculation (MCTC) model based on the periodic event scheduling problem (PESP) for a given train line plan, which is promising for macroscopic train timetabling and capacity analysis. In accordance with train operating rules, a non-collision constraint and a series of flexible overtaking constraints (FOCs) are constructed based on variations of the original binary variables in the PESP. Because of the complexity of the PESP, an iterative approximation (IA) method for integration with the CPLEX solver is proposed. Finally, two hypothetical cases are considered to analyze railway capacity, and several influencing factors are studied, including train regularity, train speed, line plan specifications (train stops), overtaking and train heterogeneity. The MCTC model and IA method are used to test a real-world case involving the timetable of the Beijing–Shanghai high-speed railway in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号