首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11391篇
  免费   605篇
公路运输   3967篇
综合类   4005篇
水路运输   2011篇
铁路运输   1795篇
综合运输   218篇
  2024年   43篇
  2023年   54篇
  2022年   141篇
  2021年   264篇
  2020年   323篇
  2019年   181篇
  2018年   147篇
  2017年   160篇
  2016年   129篇
  2015年   311篇
  2014年   796篇
  2013年   672篇
  2012年   1014篇
  2011年   1116篇
  2010年   925篇
  2009年   781篇
  2008年   876篇
  2007年   1132篇
  2006年   1023篇
  2005年   613篇
  2004年   349篇
  2003年   265篇
  2002年   206篇
  2001年   150篇
  2000年   84篇
  1999年   50篇
  1998年   22篇
  1997年   26篇
  1996年   25篇
  1995年   16篇
  1994年   25篇
  1993年   19篇
  1992年   13篇
  1991年   10篇
  1990年   14篇
  1989年   8篇
  1988年   7篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
介绍世界各国制动系统黏着限制设置及增黏方式,通过对制动系统黏着系数设置的探讨,对我国高速动车组利用黏着系数的方法进行研究,并介绍几种车辆有效增黏的方法。  相似文献   
152.
对大功率电力机车的牵引缓冲装置变形吸能元件支撑板的功能、结构、主要工艺难点进行分析,介绍一种新型的加工工艺方法,大大地提高了其生产效率.  相似文献   
153.
文章介绍了一种城轨车辆框架式结构蓄电池箱的设计,并且对该蓄电池箱结构进行了静强度和模态分析,验证了该种箱体结构具有良好的安全可靠性。  相似文献   
154.
文章介绍了W203型地铁牵引轨道车的车体结构形式、车体强度载荷工况、有限元静强度分析计算结果和疲劳强度计算结果、车体静强度试验验证,结果表明车体强度满足设计及标准要求。  相似文献   
155.
文章介绍了HXD1B型机车大螺栓的安装结构及其作用,对大螺栓的轴向工作载荷、预紧力、强度等进行计算和校核,比较了力矩法、测量螺栓伸长法、应变计法等三种不同的预紧力控制方法的优缺点,提出影响大螺栓预紧力控制的各种因素并进行分析,最终确定适用于大螺栓的预紧力及其相应的控制方法.  相似文献   
156.
作为车辆的固结设备,地铁车辆线路滤波电抗器悬挂在车厢底架上,设计者必须对其可靠性及结构强度进行仿真计算,避免应力集中,避免大变形。作为一漏磁非常大的强电磁源,漏磁场会对环境、身体健康造成一定的影响,设计者有必要对其进行漏磁屏蔽设计。文章从电抗器的结构设计、漏磁仿真计算、试验等方面做了分析研究,为车辆电抗器的可靠性设计提供了依据。  相似文献   
157.
介绍了多输出单端反激开关电源的设计方法,该方法适用于计算机联锁系统辅助电源的设计。分析多输出单端反激电源的工作原理,双闭环控制方式和工作模式;详细阐述了高频变压器的设计方法以及关键元器件和电路参数设计。该方法设计出的电源符合计算机联锁系统辅助电源性能要求,具有很大的实际工程价值。  相似文献   
158.
在预应力桥梁服役过程中,桥梁构件的抗力水平可能降低,同时在运营过程中,桥梁的交通量有可能发生增长,考虑这些时变因素的桥梁可靠度是值得关心的问题。本文总结归纳了三种典型的抗力退化模式,以某地交通量观测结果为依据,拟合了其增长函数;建立抗力衰减和荷载增长的时变模型;接着,本文以某现役预应力混凝土桥梁构件为背景,利用蒙特卡罗法模拟计算了考虑时变因素的可靠度指标,讨论了其安全使用年限。  相似文献   
159.
预应力混凝土桥梁受太阳辐射,结构表面至一定厚度范围内将产生温度差,与此同时,梁体自身对其内部纤维形成约束,从而出现温度应力。运用ANSYS软件建立了连续刚构桥主梁实体单元模型,重点考虑温度梯度影响,通过对比分析不同形状梁截面对温度应力的反应,得出腹板与顶板间加腋对腹板因温度梯度引起的拉应力影响甚微。提出腹板温度应力对预应力混凝土桥梁结构的设计过程影响甚重,须加以考虑,可供同型桥梁设计参考。  相似文献   
160.
A simple formulation for predicting the ultimate strength of ships   总被引:11,自引:0,他引:11  
The aim of this study is to derive a simple analytical formula for predicting the ultimate collapse strength of a single- and double-hull ship under a vertical bending moment, and also to characterize the accuracy and applicability for earlier approximate formulations. It is known that a ship hull will reach the overall collapse state if both collapse of the compression flange and yielding of the tension flange occur. Side shells in the vicinity of the compression and the tension flanges will often fail also, but the material around the final neutral axis will remain in the elastic state. Based on this observation, a credible distribution of longitudinal stresses around the hull section at the overall collapse state is assumed, and an explicit analytical equation for calculating the hull ultimate strength is obtained. A comparison between the derived formula and existing expressions is made for largescale box girder models, a one-third-scale frigate hull model, and full-scale ship hulls.List of symbols A B total sectional area of outer bottom - A B total sectional area of inner bottom - A D total sectional area of deck - A S half-sectional area of all sides (including longitudinal bulkheads and inner sides) - a s sectional area of a longitudinal stiffener with effective plating - b breadth of plate between longitudinal stiffeners - D hull depth - D B height of double bottom - E Young's modulus - g neutral axis position above the base line in the sagging condition or below the deck in the hogging condition - H depth of hull section in linear elastic state - I s moment of inertia of a longitudinal stiffener with effective plating - l length of a longitudinal stiffener between transverse beams - M E elastic bending moment - M p fully plastic bending moment of hull section - M u ultimate bending moment capacity of hull section - M uh ,M us ultimate bending moment in hogging or sagging conditions - r radius of gyration of a longitudinal stiffener with effective plating [=(I s /a s )1/2] - t plate thickness - Z elastic section modulus at the compression flange - Z B ,Z D elastic section modulus at bottom or deck - slenderness ratio of plate between stiffeners [= (b/t)(y/E)1/2] - slenderness ratio of a longitudinal stiffener with effective plating [=(l/r)(y/E)1/2] - y yield strength of the material - yB , yB , yD yield strength of outer bottom, inner bottom - yS deck, or side - u ultimate buckling strength of the compression flange - uB , uB , uD ultimate buckling strength of outer bottom - uS inner bottom, deck, or side  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号