全文获取类型
收费全文 | 633篇 |
免费 | 87篇 |
专业分类
公路运输 | 138篇 |
综合类 | 410篇 |
水路运输 | 74篇 |
铁路运输 | 42篇 |
综合运输 | 56篇 |
出版年
2024年 | 6篇 |
2023年 | 31篇 |
2022年 | 64篇 |
2021年 | 73篇 |
2020年 | 44篇 |
2019年 | 21篇 |
2018年 | 32篇 |
2017年 | 18篇 |
2016年 | 15篇 |
2015年 | 25篇 |
2014年 | 35篇 |
2013年 | 30篇 |
2012年 | 30篇 |
2011年 | 44篇 |
2010年 | 42篇 |
2009年 | 38篇 |
2008年 | 22篇 |
2007年 | 35篇 |
2006年 | 35篇 |
2005年 | 27篇 |
2004年 | 6篇 |
2003年 | 9篇 |
2002年 | 7篇 |
2001年 | 18篇 |
2000年 | 4篇 |
1999年 | 5篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
排序方式: 共有720条查询结果,搜索用时 15 毫秒
51.
52.
53.
针对现有端到端自动驾驶网络对于类人驾驶行为与思维特征模拟不足的问题,从类人驾驶特征出发,设计了一个包含时空特征、历史状态特征及未来特征的端到端类人驾驶控制决策网络。采用多层卷积和长短期卷积时序记忆网络(Conv-LSTM),对前方道路视觉感知图像时间序列进行时空特征提取,同时采用一维卷积和长短期时序记忆网络(Long Short-Term Memory,LSTM) 对车辆状态信息时间序列进行历史状态特征提取,进而采用多任务参数共享方式进行当前时刻和未来序列的方向盘转角、车速的控制决策,并以未来序列作为辅助任务督促当前时刻的主任务学习。为更好地耦合汽车纵横向控制参数学习的过程,还提出一种权衡纵横向控制参数损失量级及学习速度的权重自适应方法,并引入容差阈值,建立衡量纵横向控制参数训练效果的评价方法。依托Comma2k19数据集对所构建控制决策网络进行训练和验证,体现出良好的可行性及优越性。 相似文献
54.
为满足智能船舶自主航行的发展需求,解决基于强化学习的船舶避碰决策方法存在的学习效率低、泛化能力弱以及复杂会遇场景下鲁棒性差等问题,针对船舶避碰决策信息的高维性和动作的连续性等特点,考虑决策的合理性和实时性,研究了基于双延迟深度确定性策略梯度(TD3)的船舶自主避碰方法。根据船舶间相对运动信息与碰撞危险信息,从全局角度构建具有连续多时刻目标船信息的状态空间;依据船舶操纵性设计连续决策动作空间;综合考虑目标导向、航向保持、碰撞危险、《1972年国际海上避碰规则》(COLREGs)和良好船艺等因素,设计船舶运动的奖励函数;基于TD3算法,根据状态空间结构,结合长短期记忆(LSTM)网络和一维卷积网络,利用Actor-Critic结构设计船舶自主避碰网络模型,利用双价值网络学习、目标策略平滑以及策略网络延迟更新等方式稳定网络训练,利用跳帧以及批量大小和迭代更新次数动态增大等方式加速网络训练;为解决模型泛化能力弱的问题,提出基于TD3的船舶随机会遇场景训练流程,实现自主避碰模型应用的多场景迁移。运用训练得到的船舶自主避碰模型进行仿真验证,并与改进人工势场(APF)算法进行比较,结果表明:所提方法学习效率高,收敛快速平稳;训练得到的自主避碰模型在2船和多船会遇场景下均能使船舶在安全距离上驶过,并且在复杂会遇场景中比改进APF算法避碰成功率高,避让2~4艘目标船时成功率高达99.233%,5~7艘目标船时成功率97.600%,8~10艘目标船时成功率94.166%;所提方法能有效应对来船的不协调行动,避碰实时性高,决策安全合理,航向变化快速平稳、震荡少、避碰路径光滑,比改进APF方法性能更强。 相似文献
55.
56.
针对自动化集装箱码头卸货过程中岸桥、智能运输机器人和场桥设备交互作业, 实际调度环境复杂多变等问题, 以最小化最大完工时间为目标, 构建基于混合流水车间的三阶段集装箱码头集成调度模型, 为解决自动化码头调度环境动态性强的特点, 使用1种深度强化学习算法(DDQN)进行求解。依据码头实际调度情况, 使用神经网络实时拟合动作-值函数, 把各阶段设备状态数据输入模型, 采用经验回放机制训练模型, 把单一启发式规则加复合启发式规则作为设备候选行为, 通过强化学习动作选择与动作评估机制, 得到最优的集装箱-设备组合策略, 并与精确算法和常用的几种元启发式策略进行对比分析。结果表明: 较大规模算例下, 与目前较为先进的粒子群算法相比, 所提方法的总作业时间平均降低了7.84%, 与理论下界值的差距分别为6.0%, 5.6%, 4.6%, 三阶段设备负载较为均衡, 设备平均利用率为89%, 满足实际应用需求; 小规模算例下, 与Gurobi求解器的总完工时间平均误差为1.99%, 且随着算例规模增加, 所提算法在求解时间上显现出一定的优势, 求解时间最大提升59%, 验证了所提方法对于提升自动化集装箱码头运行效率的可行性和高效性。 相似文献
57.
针对自适应巡航控制系统在控制主车跟驰行驶中受前车运动状态的不确定性影响问题,在分析车辆运动特点的基础上,提出一种能够考虑前车运动随机性的跟驰控制策略。搭建驾驶人实车驾驶数据采集平台,招募驾驶人进行实车跟驰道路试验,建立驾驶人真实驾驶数据库。假设车辆未来时刻的加速度决策主要受前方目标车辆运动影响,建立基于双前车跟驰结构的主车纵向控制架构。将驾驶数据库中的驾驶数据分别视作前车和前前车运动变化历程,利用高斯过程算法建立了前车纵向加速度变化随机过程模型,实现对前方目标车运动状态分布的概率性建模。将车辆跟驰问题构建为一定奖励函数下的马尔可夫决策过程,引入深度强化学习研究主车跟驰控制问题。利用近端策略优化算法建立车辆跟驰控制策略,通过与前车运动随机过程模型进行交互式迭代学习,得到具有运动不确定性跟驰环境下的主车纵向控制策略,实现对车辆纵向控制的最优决策。最后基于真实驾驶数据,对控制策略进行测试。研究结果表明:该策略建立了车辆纵向控制与主车和双前车状态之间的映射关系,在迭代学习过程中对前车运动的随机性进行考虑,跟驰控制中不需要对前车运动进行额外的概率预测,能够以较低的计算量实现主车稳定跟随前车行驶。 相似文献
58.
道路系统中的人机混驾交通环境是指人工驾驶车辆与自动驾驶车辆混合运行的交通环境,其中换道行为建模是人机混驾环境下无人驾驶车辆行为研究的热点。基于深度学习理论,构建人机混驾环境下基于长短期记忆神经网络的无人驾驶车辆换道行为模型(Long-short-term-memory-based Autonomous Vehicles Lane Changing,LSTM-LC)。通过研究人工驾驶车辆在换道过程中与周边车辆的相互作用,对换道行为影响因素进行分析;同时,为了提升模型的迁移性,引入道路横向偏移量信息。结合LSTM神经网络的输入要求,使用美国公开交通数据集Next Generation SIMulation(NGSIM)构建换道行为样本库。针对LSTM-LC模型,以均方差MSE作为损失函数,使用RMSprop优化方法进行训练,对LSTM网络结构、历史序列长度N及训练样本量3个重要参数进行标定。最后,针对道路横向偏移量M对LSTM-LC模型性能的影响进行对比试验。研究结果表明:相比GRU-LC模型,LSTM-LC模型对换道行为的表征更准确,在模型的精度和迁移性上有着显著的提升;GRU-LC模型的均方差为4.64 m2,迁移性均方差为119.82 m2,而LSTM-LC模型的均方差为3.18 m2,迁移性均方差为79.58 m2,分别优化了31.5%和39.71%;通过引入道路横向偏移量M,可将LSTM-LC模型精度和迁移性提升约10%,且模型稳定性更强。 相似文献
59.
为探究不同微生物加固程度、有效围压和相对密实度与微生物加固钙质砂的动强度系数之间的相对重要性大小,并建立相应的统一动强度准则,用以预测微生物加固钙质砂的动强度,依据86组微生物诱导碳酸钙沉淀(MICP)技术加固钙质砂的不排水三轴试验数据建立数据集,利用反向传播神经网络(BPNN)和多元自适应回归样条(MARS)方法对数据集进行训练和预测。结果表明:微生物加固程度对动强度系数的影响程度最大,有效围压的影响稍逊之,相对密实度的影响相对较小,其相对重要性大小均值分别是100%、94%与68%,基于机器学习方法对微生物加固钙质砂的动强度系数进行预测的效果优于传统方法建立的统一动强度准则所获得的结果,其中BPNN模型的预测结果更准确,MARS模型的计算效率更高。 相似文献
60.
由于在现实生活中能够采集到的不同雾天等级的高速公路车辆跟驰样本有限,导致雾天跟驰模型精度不佳,为此在长短时记忆神经网络(long short-term memory,LSTM)跟驰模型的基础上,采用迁移学习(transfer learning,TL)方法来提升雾天跟驰模型的性能。利用驾驶模拟实验平台搭建高速公路雾天与正常天气2种实验场景进行驾驶模拟实验,获得296组正常天气下(源域)的跟驰样本与100组雾天下(目标域)的跟驰样本。提出了基于最长公共子序列(longest common sequence solution,LCSS)的迁移样本选择方法,从源域中选出100个样本迁移至目标域中,通过扩大训练样本提升LSTM从源域、目标域特征到目标域输出的端对端泛化学习能力,得到雾天高速公路车辆跟驰模型。为对比所提样本迁移方法对LSTM模型的效用,将LSTM-TL模型与训练样本全部来源于源域的LSTM-S模型和训练样本全部来源于目标域的LSTM-T模型进行对比,LSTM-TL模型的均方误差、均方根误差和平均绝对误差比LSTM-S模型分别减小47.5%、27.7%和46.5%,比LSTM-T模型减小31.1%、17.0%和29.9%。为对比不同模型在仅有100组目标域样本时的性能,将LSTM-TL模型与Gipps、IDM、BP这3个模型进行对比,LSTM-TL模型的均方误差、均方根误差和平均绝对误差比3个模型中表现最优的Gipps模型减小18.5%、8.0%和25.9%。结果表明:直接将LSTM-S模型应用于目标域的预测,其精度不高,采用样本迁移合理可行;LCSS方法对源域样本筛选有效,由100个源域样本迁移到目标域训练得到的LSTM-TL模型的精度最高;在小样本情况下,拥有较少参数的Gipps模型预测精度优于LSTM-T或LSTM-S模型,但由于迁移学习能够从源域样本中获取知识的特性,LSTM-TL模型有着最高的精度。 相似文献