首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1943篇
  免费   150篇
公路运输   593篇
综合类   613篇
水路运输   489篇
铁路运输   292篇
综合运输   106篇
  2024年   14篇
  2023年   29篇
  2022年   41篇
  2021年   64篇
  2020年   89篇
  2019年   54篇
  2018年   51篇
  2017年   50篇
  2016年   72篇
  2015年   65篇
  2014年   156篇
  2013年   136篇
  2012年   176篇
  2011年   182篇
  2010年   135篇
  2009年   138篇
  2008年   114篇
  2007年   143篇
  2006年   136篇
  2005年   73篇
  2004年   60篇
  2003年   23篇
  2002年   10篇
  2001年   27篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有2093条查询结果,搜索用时 15 毫秒
51.
材料本构关系的准确程度对结构数值仿真分析的结果影响很大。对于受冲击载荷的金属结构,材料特性还与应变率关系密切。通过分别采用Hopkinson压杆实验系统与WDW3050微控电子万能试验机进行了1Cr18Ni9Ti钢的动态与静态性能测试,得到了本构方程的表达式,为后续的结构抗冲击仿真分析提供了较为准确的数据。  相似文献   
52.
周鹏  运荷 《山西交通科技》2012,(4):84-85,91
结合山西和顺至榆社高速公路的环境影响评价工作,通过对云山隧道地下水环境现状的调查,论述了隧道建设可能对区域地下水环境造成的影响,并提出了相应的对策和建议。  相似文献   
53.
公路隧道通风中射流风机纵向最小间距研究   总被引:1,自引:1,他引:1  
射流风机纵向最小间距的确定对于风机正常经济的运行起着十分重要的作用。通过对射流风机工作原理和隧道内流态进行分析,依据射流力学的有关原理找到了影响射流风机纵向最小间距的因素和计算方法。确定射流风机纵向最小间距的计算方法通过工程类比和CFD软件数值模拟验证,符合真实情况,可为今后射流风机纵向最小间距的确定提供指导。  相似文献   
54.
李瑞 《山西交通科技》2013,(1):39-40,52
结合黄土的特性,选择预建高速公路的典型黄土,通过室内试验方法确定黄土的物理指标。通过黄土击实试验确定了该试样的最佳含水量为14.3%,与之相应的最大干密度为1.918 g/cm3。最后选择冲击式压路机在试压路段进行碾压,通过试验数据可知,在冲击压实达到40遍时,地面层20 cm的黄土的压实度能达到97.8%,黄土地基的总沉降量达到25.12 cm,且沉降趋于稳定。  相似文献   
55.
胡营  孙恒 《山西交通科技》2013,(4):92-94,103
以某枢纽匝道变宽桥为例,采用有限元软件MIDAS/Civil进行梁格法分析,对该桥的梁格划分及截面特性的计算进行了详细说明,并对该桥的支座反力、位移进行了分析,得出该桥采用梁格法模拟的合理性,为以后同类型桥梁的设计提供了借鉴和参考。  相似文献   
56.
朱钰  章文丰  潘国培  王昊 《船舶工程》2018,40(S1):179-181
机械阻抗是机械系统特性的集中参数表示, 是解决机械系统耦合问题的一个重要工具。现有的机械阻抗方法有激振器激振传感器,冲击锤敲击实验结构等方法,但都有各自的局限性。本文提出了改进的锤击法测量原点阻抗。通过实验对比,对其可行性进行了研究,证明了此种方法可以快速并较为准确的获得结构的原点阻抗,具有工程实用性。  相似文献   
57.
从船级社规范对于不符合主尺度比要求的船舶船体梁波浪载荷的规定出发,采用理论预报和船模试验2种综合方式,进行了小于0.6方型系数、高航速、高海况目标船的波浪载荷研究.从规范对波浪载荷的线性理论预报值进行的非线性修正,修正后中拱和中垂波浪弯矩绝对值之和与线性理论预报极值全幅值相等出发,阐述所研究船特殊主尺度比下的模型试验结果、三维非线性水弹性理论预报结果显示出的波浪载荷非线性行为;同时综合模型试验与理论预报的共同规律,研究不同波高、航速、浪向等非常规船型船体波浪载荷的强非线性行为,从而认为规范基于的线性理论预报值进行非线性修正的统一规定太过笼统,进而建议规范对波浪载荷的非线性修正予以进一步的明确区分和规定.  相似文献   
58.
超声冲击处理(UIT)是一种有效的焊后改善焊接接头疲劳性能的工艺措施,其借助机械撞击和超声振动的共同作用,使焊趾表面产生塑性变形从而引入有益的压缩残余应力。为评价UIT技术对焊接接头残余应力的影响,该文提出了一套新的数值分析方法,包括焊接数值模拟及随后的超声冲击处理过程的动态弹塑性有限元分析。在有限元模型中考虑了实际的工艺参数和超声促成的材料软化效应。以船用高强钢AH36非承载十字焊接接头为研究对象,将预测的超声冲击处理前后的残余应力分布与实验结果进行对比,两者有较好的吻合。在此基础上,探讨了静态预载荷对超声冲击处理态残余应力再分布的影响。  相似文献   
59.
为探究钢板在典型防御目标弹丸侵彻下的抗弹性能及破坏模式,开展系列弹道实验,并结合有限元分析软件Ansys/LS-DYNA,探讨弹体初速、入射角度及靶板厚度对靶板抗弹性能的影响,对比分析不同条件下的破坏模式.结果表明,在改变单一因素的条件下,弹体初速越大、入射角越大、钢板厚度越大,钢板吸能越高,抗侵彻能力越强.  相似文献   
60.
The aviation community is increasing its attention on the concept of predictability when conducting aviation service quality assessments. Reduced fuel consumption and the related cost is one of the various benefits that could be achieved through improved flight predictability. A lack of predictability may cause airline dispatchers to load more fuel onto aircraft before they depart; the flights would then in turn consume extra fuel just to carry excess fuel loaded. In this study, we employ a large dataset with flight-level fuel loading and consumption information from a major US airline. With these data, we estimate the relationship between the amount of loaded fuel and flight predictability performance using a statistical model. The impact of loaded fuel is translated into fuel consumption and, ultimately, fuel cost and environmental impact for US domestic operations. We find that a one-minute increase in the standard deviation of airborne time leads to a 0.88 min increase in loaded contingency fuel and 1.66 min in loaded contingency and alternate fuel. If there were no unpredictability in the aviation system, captured in our model by eliminating standard deviation in flight time, the reduction in the loaded fuel would between 6.12 and 11.28 min per flight. Given a range of fuel prices, this ultimately would translate into cost savings for US domestic airlines on the order of $120–$452 million per year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号