首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   67篇
公路运输   204篇
综合类   359篇
水路运输   233篇
铁路运输   175篇
综合运输   150篇
  2024年   5篇
  2023年   5篇
  2022年   19篇
  2021年   24篇
  2020年   36篇
  2019年   20篇
  2018年   31篇
  2017年   35篇
  2016年   45篇
  2015年   49篇
  2014年   80篇
  2013年   72篇
  2012年   88篇
  2011年   110篇
  2010年   67篇
  2009年   54篇
  2008年   57篇
  2007年   75篇
  2006年   78篇
  2005年   41篇
  2004年   39篇
  2003年   21篇
  2002年   11篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有1121条查询结果,搜索用时 343 毫秒
941.
The aim of this paper is to remove the known limitations of Deterministic and Stochastic User Equilibrium (DUE and SUE), namely that only routes with the minimum cost are used in DUE, and that all permitted routes are used in SUE regardless of their costs. We achieve this by combining the advantages of the two principles, namely the definition of unused routes in DUE and of mis-perception in SUE, such that the resulting choice sets of used routes are equilibrated. Two model families are formulated to address this issue: the first is a general version of SUE permitting bounded and discrete error distributions; the second is a Restricted SUE model with an additional constraint that must be satisfied for unused paths. The overall advantage of these model families consists in their ability to combine the unused routes with the use of random utility models for used routes, without the need to pre-specify the choice set. We present model specifications within these families, show illustrative examples, evaluate their relative merits, and identify key directions for further research.  相似文献   
942.
The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0–1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.  相似文献   
943.
Emerging transportation network services, such as customized buses, hold the promise of expanding overall traveler accessibility in congested metropolitan areas. A number of internet-based customized bus services have been planned and deployed for major origin-destination (OD) pairs to/from inner cities with limited physical road infrastructure. In this research, we aim to develop a joint optimization model for addressing a number of practical challenges for providing flexible public transportation services. First, how to maintain minimum loading rate requirements and increase the number of customers per bus for the bus operators to reach long-term profitability. Second, how to optimize detailed bus routing and timetabling plans to satisfy a wide range of specific user constraints, such as passengers’ pickup and delivery locations with preferred time windows, through flexible decision for matching passengers to bus routes. From a space-time network modeling perspective, this paper develops a multi-commodity network flow-based optimization model to formulate a customized bus service network design problem so as to optimize the utilization of the vehicle capacity while satisfying individual demand requests defined through space-time windows. We further develop a solution algorithm based on the Lagrangian decomposition for the primal problem and a space-time prism based method to reduce the solution search space. Case studies using both the illustrative and real-world large-scale transportation networks are conducted to demonstrate the effectiveness of the proposed algorithm and its sensitivity under different practical operating conditions.  相似文献   
944.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   
945.
多交路共线运营客流分配是城市轨道交通复杂交路设计、列车开行方案优化的基础。本 文以典型共线运营多交路为例,通过划分客流出行区段将乘客分为不同类型,分析了不同类型客 流的路径选择策略,提出以发车频率确定的客流分担比例计算方法,构建了基于发车频率和乘客 出行区段划分的客流分配模型。在此基础上,将多交路共线运营物理网络转化为共线运营服务 网络,通过引入超路径的概念,将乘客出行优化策略转化为共线运营服务网络上的最短超路径问 题,并考虑乘客在车拥挤感知费用,提出了基于超路径的客流增量分配方法。最后,通过算例验 证了共线客流分配方法的有效性,对比分析了两种方法的特点和适用性。  相似文献   
946.
This paper proposes a state-augmented shipping (SAS) network framework to integrate various activities in liner container shipping chain, including container loading/unloading, transshipment, dwelling at visited ports, in-transit waiting and in-sea transport process. Based on the SAS network framework, we develop a chance-constrained optimization model for a joint cargo assignment problem. The model attempts to maximize the carrier’s profit by simultaneously determining optimal ship fleet capacity setting, ship route schedules and cargo allocation scheme. With a few disparities from previous studies, we take into account two differentiated container demands: deterministic contracted basis demand received from large manufacturers and uncertain spot demand collected from the spot market. The economies of scale of ship size are incorporated to examine the scaling effect of ship capacity setting in the cargo assignment problem. Meanwhile, the schedule coordination strategy is introduced to measure the in-transit waiting time and resultant storage cost. Through two numerical studies, it is demonstrated that the proposed chance-constrained joint optimization model can characterize the impact of carrier’s risk preference on decisions of the container cargo assignment. Moreover, considering the scaling effect of large ships can alleviate the concern of cargo overload rejection and consequently help carriers make more promising ship deployment schemes.  相似文献   
947.
In this study, to incorporate realistic discrete stochastic capacity distribution over a large number of sampling days or scenarios (say 30–100 days), we propose a multi-scenario based optimization model with different types of traveler knowledge in an advanced traveler information provision environment. The proposed method categorizes commuters into two classes: (1) those with access to perfect traffic information every day, and (2) those with knowledge of the expected traffic conditions (and related reliability measure) across a large number of different sampling days. Using a gap function framework or describing the mixed user equilibrium under different information availability over a long-term steady state, a nonlinear programming model is formulated to describe the route choice behavior of the perfect information (PI) and expected travel time (ETT) user classes under stochastic day-dependent travel time. Driven by a computationally efficient algorithm suitable for large-scale networks, the model was implemented in a standard optimization solver and an open-source simulation package and further applied to medium-scale networks to examine the effectiveness of dynamic traveler information under realistic stochastic capacity conditions.  相似文献   
948.
This paper formulates and examines the passenger flow assignment (itinerary choice) problem in high-speed railway (HSR) systems with multiple-class users and multiple-class seats, given the train schedules and time-varying travel demand. In particular, we take into account advance booking cost of travelers in the itinerary choice problem. Rather than a direct approach to model advance booking cost with an explicit cost function, we consider advance booking cost endogenously, which is determined as a part of the passenger choice equilibrium. We show that this equilibrium problem can be formulated as a linear programming (LP) model based on a three-dimension network representation of time, space, and seat class. At the equilibrium solution, a set of Lagrange multipliers for the LP model are obtained, which are associated with the rigid in-train passenger capacity constraints (limited numbers of seats). We found that the sum of the Lagrange multipliers along a path in the three-dimension network reflects the advance booking cost of tickets (due to advance/early booking to guarantee availability) perceived by the passengers. Numerical examples are presented to demonstrate and illustrate the proposed model for the passenger assignment problem.  相似文献   
949.
This paper develops a novel linear programming formulation for autonomous intersection control (LPAIC) accounting for traffic dynamics within a connected vehicle environment. Firstly, a lane based bi-level optimization model is introduced to propagate traffic flows in the network, accounting for dynamic departure time, dynamic route choice, and autonomous intersection control in the context of system optimum network model. Then the bi-level optimization model is transformed to the linear programming formulation by relaxing the nonlinear constraints with a set of linear inequalities. One special feature of the LPAIC formulation is that the entries of the constraint matrix has only {−1, 0, 1} values. Moreover, it is proved that the constraint matrix is totally unimodular, the optimal solution exists and contains only integer values. It is also shown that the traffic flows from different lanes pass through the conflict points of the intersection safely and there are no holding flows in the solution. Three numerical case studies are conducted to demonstrate the properties and effectiveness of the LPAIC formulation to solve autonomous intersection control.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号