首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1590篇
  免费   70篇
公路运输   289篇
综合类   503篇
水路运输   507篇
铁路运输   168篇
综合运输   193篇
  2024年   6篇
  2023年   16篇
  2022年   32篇
  2021年   41篇
  2020年   58篇
  2019年   38篇
  2018年   44篇
  2017年   53篇
  2016年   61篇
  2015年   82篇
  2014年   128篇
  2013年   99篇
  2012年   118篇
  2011年   121篇
  2010年   96篇
  2009年   86篇
  2008年   101篇
  2007年   121篇
  2006年   118篇
  2005年   58篇
  2004年   43篇
  2003年   31篇
  2002年   32篇
  2001年   16篇
  2000年   18篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有1660条查询结果,搜索用时 15 毫秒
611.
结合目前轨道交通工程建设信息化应用程度和管理现状,本文提出一套界面友好.架构合理,业务信息共享,平台功能强大且实用的基于GIS安全管理统一信息平台.实现轨道交通工程建设业务信息资源深度集成和统一共享,全面提高业务信息化管理水平和安全风险处理能力.对信息化平台业务应用需求、关键技术路线、平台总体架构、业务数据流程及平台总体功能应用分别作了详细阐述,对于轨道交通工程信息化建设具有指导意义和应用价值.  相似文献   
612.
This article reports on an integrated modeling exercise, conducted on behalf of the US Federal Highway Administration, on the potential for frequent automated transit shuttles (‘community transit’), in conjunction with improvements to the walking and cycling environment, to overcome the last-mile problem of regional rail transit and thereby divert travelers away from car use. A set of interlocking investigations was undertaken, including development of urban visualizations, distribution of a home-based survey supporting a stated-preference model of mode choice, development of an agent-based model, and alignment of the mode-choice and agent-based models. The investigations were designed to produce best-case estimates of the impact of community transit and ancillary improvements in reducing car use. The models in combination suggested significant potential to divert drivers, especially in areas that were relatively transit-poor to begin with.  相似文献   
613.
The paper explores what can occur when select street lanes throughout a city are periodically reserved for buses. Simulations of an idealized city were performed to that end. The city’s time-varying travel demand was studied parametrically. In all cases, queues formed throughout the city during a rush, and dissipated during the off-peak period that followed. Bus lanes were activated all at once across the city, and were eventually deactivated in like fashion. Activation and deactivation schedules varied parametrically as well. Schedules that roughly balanced the trip-time savings to bus riders against the added delays to car travelers were thus identified.Findings reveal why activating conversions near the start of a rush can degrade travel, both by car and by bus. Balance was struck by instead activating lane conversions nearer the end of the rush, when vehicle accumulation in the city was at or near its maximum. Most of the time savings to bus riders accrued after the conversions had been left in place for only 30 min. Leaving them for longer durations often brought modest additional savings to bus travelers. Yet, the added delays to cars often grew large as a result.These findings held even when buses garnered high ridership shares. This was the case when lane conversions gradually induced new bus trips among residents who formerly did not travel. It was also true when high ridership was a pre-existing feature of the city. Activating conversions a bit earlier in a rush was found to make sense only if commuters shifted from cars to buses in very large numbers. Findings also unveiled how to fine-tune activation and deactivation schedules to suit a city’s congestion level. Guidelines for scheduling conversions in real settings are furnished. So is discussion on how these schedules might be adapted to daily variations in city-wide traffic states. Roles for technology are discussed as well.  相似文献   
614.
Coupling a traffic microsimulation with an emission model is a means of assessing fuel consumptions and pollutant emissions at the urban scale. Dealing with congested states requires the efficient capture of traffic dynamics and their conditioning for the emission model. Two emission models are investigated here: COPERT IV and PHEM v11. Emission calculations were performed at road segments over 6 min periods for an area of Paris covering 3 km2. The resulting network fuel consumption (FC) and nitrogen oxide (NOx) emissions are then compared. This article investigates: (i) the sensitivity of COPERT to the mean speed definition, and (ii) how COPERT emission functions can be adapted to cope with vehicle dynamics related to congestion. In addition, emissions are evaluated using detailed traffic output (vehicle trajectories) paired with the instantaneous emission model, PHEM.COPERT emissions are very sensitive to mean speed definition. Using a degraded speed definition leads to an underestimation ranging from −13% to −25% for fuel consumption during congested periods (from −17% to −36% respectively for NOx emissions). Including speed distribution with COPERT leads to higher emissions, especially under congested conditions (+13% for FC and +16% for NOx). Finally, both these implementations are compared to the instantaneous modeling chain results. Performance indicators are introduced to quantify the sensitivity of the coupling to traffic dynamics. Using speed distributions, performance indicators are more or less doubled compared to traditional implementation, but remain lower than when relying on trajectories paired with the PHEM emission model.  相似文献   
615.
Driving cycles are an important input for state-of-the-art vehicle emission models. Development of a driving cycle requires second-by-second vehicle speed for a representative set of vehicles. Current standard driving cycles cannot reflect or forecast changes in traffic conditions. This paper introduces a method to develop representative driving cycles using simulated data from a calibrated microscopic traffic simulation model of the Toronto Waterfront Area. The simulation model is calibrated to reflect road counts, link speeds, and accelerations using a multi-objective genetic algorithm. The simulation is validated by comparing simulated vs. observed passenger freeway cycles. The simulation method is applied to develop AM peak hour driving cycles for light, medium and heavy duty trucks. The demonstration reveals differences in speed, acceleration, and driver aggressiveness between driving cycles for different vehicle types. These driving cycles are compared against a range of available driving cycles, showing different traffic conditions and driving behaviors, and suggesting a need for city-specific driving cycles. Emissions from the simulated driving cycles are also compared with EPA’s Heavy Duty Urban Dynamometer Driving Schedule showing higher emission factors for the Toronto Waterfront cycles.  相似文献   
616.
Exposure to fine particulate matter from vehicle exhaust is associated with increased health risk. This study develops a new approach for creating spatially detailed regional maps of fine particulate matter concentration from vehicle exhaust using a dispersion model to better evaluate these risks. The spatial extent, diurnal, and seasonal patterns of concentration fields across Los Angeles County, California are evaluated and population exposure and exposure equity by race and income are investigated. The results demonstrate how this modeling approach can create new knowledge about vehicle emissions exposure. This approach also provides a method for proactively screening out regional plans, or specific projects within these plans, that are likely to cause air quality concerns. A proactive and regional air quality assessment can identify potential problems earlier in the planning process and a wider range of solutions, saving time, money and protecting public health. The detailed concentration maps can also be used to improve the siting of regulatory air quality monitors and provide more accurate exposure data for epidemiology studies.  相似文献   
617.
Greater adoption and use of alternative fuel vehicles (AFVs) can be environmentally beneficial and reduce dependence on gasoline. The use of AFVs vis-à-vis conventional gasoline vehicles is not well understood, especially when it comes to travel choices and short-term driving decisions. Using data that contains a sufficiently large number of early AFV adopters (who have overcome obstacles to adoption), this study explores differences in use of AFVs and conventional gasoline vehicles (and hybrid vehicles). The study analyzes large-scale behavioral data integrated with sensor data from global positioning system devices, representing advances in large-scale data analytics. Specifically, it makes sense of data containing 54,043,889 s of speed observations, and 65,652 trips made by 2908 drivers in 5 regions of California. The study answers important research questions about AFV use patterns (e.g., trip frequency and daily vehicle miles traveled) and driving practices. Driving volatility, as one measure of driving practice, is used as a key metric in this study to capture acceleration, and vehicular jerk decisions that exceed certain thresholds during a trip. The results show that AFVs cannot be viewed as monolithic; there are important differences within AFV use, i.e., between plug-in hybrids, battery electric, or compressed natural gas vehicles. Multi-level models are particularly appropriate for analysis, given that the data are nested, i.e., multiple trips are made by different drivers who reside in various regions. Using such models, the study also found that driving volatility varies significantly between trips, driver groups, and regions in California. Some alternative fuel vehicles are associated with calmer driving compared with conventional vehicles. The implications of the results for safety, informed consumer choices and large-scale data analytics are discussed.  相似文献   
618.
Predicting the duration of traffic incidents sequentially during the incident clearance period is helpful in deploying efficient measures and minimizing traffic congestion related to such incidents. This study proposes a competing risk mixture hazard-based model to analyze the effect of various factors on traffic incident duration and predict the duration sequentially. First, topic modeling, a text analysis technique, is used to process the textual features of the traffic incident to extract time-dependent topics. Given four specific clearance methods and the uncertainty of these methods when used during traffic incidents, the proposed mixture model uses the multinomial logistic model and parametric hazard-based model to assess the influence of covariates on the probability of clearance methods and on the duration of the incident. Subsequently, the performance of estimated mixture model in sequentially predicting the incident duration is compared with that of the non-mixture model. The prediction results show that the presented mixture model outperforms the non-mixture model.  相似文献   
619.
This paper systematically compares finite sample performances of methods to build confidence intervals for willingness to pay measures in a choice modeling context. It contributes to the field by also considering methods developed in other research fields. Various scenarios are evaluated under an extensive Monte Carlo study. Results show that the commonly used Delta method, producing symmetric intervals around the point estimate, often fails to account for skewness in the estimated willingness to pay distribution. Both the Fieller method and the likelihood ratio test inversion method produce more realistic confidence intervals for small samples. Some bootstrap methods also perform reasonably well, in terms of effective coverage. Finally, empirical data are used to illustrate an application of the methods considered.  相似文献   
620.
Various market-based measures have been proposed to reduce CO2 emissions from international shipping. One promising mechanism under consideration is the Emission Trading Scheme (ETS). This study analyzes and benchmarks the economic implications of two alternative ETS mechanisms, namely, an open ETS compared to a Maritime only ETS (METS). The analytical solutions and model calibration results allow us to quantify the impacts of alternative ETS schemes on the container shipping sector and the dry bulk shipping sector. It is found that an ETS, whether open or maritime only, will decrease shipping speed, carrier outputs and fuel consumption for both the container and dry bulk sectors, even in the presence of a “wind-fall” profit to shipping companies. Under an open ETS, the dry bulk sector will suffer from a higher proportional reduction in output than the container sector, and will thus sell more emission permits or purchase fewer permits. Under an METS, container carriers will buy emission permits from the dry bulk side. In addition, under an METS the degree of competition within one sector will have spill-over effects on the other sector. Specifically, when the sector that sells (buys) permits is more collusive (competitive), the equilibrium permit price will rise. This study provides a framework for identifying the moderating effects of market structure and competition between firms on emission reduction schemes, and emphasizes the importance of understanding the differential impacts of ETS schemes on individual sectors within an industry when considering alternative policies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号