首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5657篇
  免费   445篇
公路运输   2712篇
综合类   1375篇
水路运输   336篇
铁路运输   1364篇
综合运输   315篇
  2024年   24篇
  2023年   69篇
  2022年   264篇
  2021年   415篇
  2020年   312篇
  2019年   185篇
  2018年   144篇
  2017年   177篇
  2016年   194篇
  2015年   227篇
  2014年   386篇
  2013年   268篇
  2012年   602篇
  2011年   444篇
  2010年   295篇
  2009年   269篇
  2008年   335篇
  2007年   352篇
  2006年   324篇
  2005年   204篇
  2004年   163篇
  2003年   111篇
  2002年   75篇
  2001年   69篇
  2000年   28篇
  1999年   13篇
  1998年   18篇
  1997年   38篇
  1996年   41篇
  1995年   24篇
  1994年   11篇
  1993年   3篇
  1992年   3篇
  1991年   8篇
  1990年   6篇
  1988年   1篇
排序方式: 共有6102条查询结果,搜索用时 15 毫秒
621.
Public charging infrastructure represents a key success factor in the promotion of plug-in electric vehicles (PEV). Given that a large initial investment is required for the widespread adoption of PEV, many studies have addressed the location choice problem for charging infrastructure using a priori simple assumptions. Ideally, however, identifying optimal locations of charging stations necessitates an understanding of charging behavior. Limited market penetration of PEV makes it difficult to grasp any regularities in charging behavior. Using a Dutch data set about four-years of charging transactions, this study presents a detailed analysis of inter-charging times. Recognizing that PEV users may exhibit different charging behavior, this study estimates a latent class hazard duration model, which accommodates duration dependence, unobserved heterogeneity and the effects of time-varying covariates. PEV users are endogenously classified into regular and random users by treating charging regularity as a latent variable. The paper provides valuable insights into the dynamics of charging behavior at public charging stations, and which strategies can be successfully used to improve the performance of public charging infrastructure.  相似文献   
622.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   
623.
Walking has been highlighted as an independent transportation mode as well as an access/egress mode to/from public transit to encourage the use of more sustainable transport systems. However, walking does not seem to have priority over other transportation modes, especially in areas where various modes of movement are in conflict. The pedestrian push-button system seems to be a solution to distribute the right of way. The focus of this study is on the performance issue of the pedestrian push-button. Specifically, this study deals with issues related to mid-block crossings and attempts to answer two questions: whose waiting time is longer at pre-timed and push-button crossings, pedestrians, or vehicles? and which system – pre-timed or push-button – is better in terms of total waiting time? According to our simulation analyses, if the pedestrian flow rate is less than 120, 85, and 70 ped/h for two-, three-, and four-lane roads, respectively, the push-button system is recommended.  相似文献   
624.
This research is focused on a generalization on the Max Benefit Chinese Postman Problem and the multiple vehicle variant of the Chinese Postman Problem. We call this generalization, the Generalized Maximum Benefit k-Chinese Postman Problem (GB k-CPP). We present a novel Mixed Integer Programming (MIP) formulation for the GB k-CPP. Four different cases of the model are discussed. The first case, performs arc-routing with profits and assumes that the origin and destination for each vehicle is the same for each cycle and is given by the user. The next case relaxes the assumption that the origin and destination for each vehicle should be the same and allows the users to select possible origins/destinations for vehicles. Case three gets the origin for each vehicle as input and produces a solution based on finding the best destination for each vehicle. The last case, that is very general, allows the optimization model to select possibly different locations for vehicle origin and destination, during each cycle. The different cases are applied to a security patrolling case conducted on the network of University of Maryland at College Park campus and the results are compared.  相似文献   
625.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   
626.
The automotive industry is witnessing a revolution with the advent of advanced vehicular technologies, smart vehicle options, and fuel alternatives. However, there is very limited research on consumer preferences for such advanced vehicular technologies. The deployment and penetration of advanced vehicular technologies in the marketplace, and planning for possible market adoption scenarios, calls for the collection and analysis of consumer preference data related to these emerging technologies. This study aims to address this need, offering a detailed analysis of consumer preference for alternative fuel types and technology options using data collected in stated choice experiments conducted on a sample of consumers from six metropolitan cities in South Korea. The results indicate that there is considerable heterogeneity in consumer preferences for various smart technology options such as wireless internet, vehicle connectivity, and voice command features, but relatively less heterogeneity in the preference for smart vehicle applications such as real-time traveler information on parking and traffic conditions.  相似文献   
627.
This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.  相似文献   
628.
This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of $3.19 per day when exclusively charging at home, compared to $3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.  相似文献   
629.
The turning behavior is one of the most challenging driving maneuvers under non-protected phase at mixed-flow intersections. Currently, one-dimensional simulation models focus on car-following and gap-acceptance behaviors in pre-defined lanes with few lane-changing behaviors, and they cannot model the lateral and longitudinal behaviors simultaneously, which has limitation in representing the realistic turning behavior. This paper proposes a three-layered “plan-decision-action” (PDA) framework to obtain acceleration and angular velocity in the turning process. The plan layer firstly calculates the two-dimensional optimal path and dynamically adjusts the trajectories according to interacting objects. The decision layer then uses the decision tree method to select a suitable behavior in three alternatives: car-following, turning and yielding. Finally, in the action layer, a set of corresponding operational models specify the decided behavior into control parameters. The proposed model is tested by reproducing 210 trajectories of left-turn vehicles at a two-phase mixed-flow intersection in Shanghai. As a result, the simulation reproduces the variation of trajectories, while the coverage rate of the trajectories is 88.8%. Meanwhile, both the travel time and post-encroachment time of simulation and empirical turning vehicles are similar and do not show statistically significant difference.  相似文献   
630.
Driving volatility captures the extent of speed variations when a vehicle is being driven. Extreme longitudinal variations signify hard acceleration or braking. Warnings and alerts given to drivers can reduce such volatility potentially improving safety, energy use, and emissions. This study develops a fundamental understanding of instantaneous driving decisions, needed for hazard anticipation and notification systems, and distinguishes normal from anomalous driving. In this study, driving task is divided into distinct yet unobserved regimes. The research issue is to characterize and quantify these regimes in typical driving cycles and the associated volatility of each regime, explore when the regimes change and the key correlates associated with each regime. Using Basic Safety Message (BSM) data from the Safety Pilot Model Deployment in Ann Arbor, Michigan, two- and three-regime Dynamic Markov switching models are estimated for several trips undertaken on various roadway types. While thousands of instrumented vehicles with vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication systems are being tested, nearly 1.4 million records of BSMs, from 184 trips undertaken by 71 instrumented vehicles are analyzed in this study. Then even more detailed analysis of 43 randomly chosen trips (N = 714,340 BSM records) that were undertaken on various roadway types is conducted. The results indicate that acceleration and deceleration are two distinct regimes, and as compared to acceleration, drivers decelerate at higher rates, and braking is significantly more volatile than acceleration. Different correlations of the two regimes with instantaneous driving contexts are explored. With a more generic three-regime model specification, the results reveal high-rate acceleration, high-rate deceleration, and cruise/constant as the three distinct regimes that characterize a typical driving cycle. Moreover, given in a high-rate regime, drivers’ on-average tend to decelerate at a higher rate than their rate of acceleration. Importantly, compared to cruise/constant regime, drivers’ instantaneous driving decisions are more volatile both in “high-rate” acceleration as well as “high-rate” deceleration regime. The study contributes to analyzing volatility in short-term driving decisions, and how changes in driving regimes can be mapped to a combination of local traffic states surrounding the vehicle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号